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Abstract: 

The susceptible-infected-recovery-death model is used in this research project 

in order to replicate the illness epidemic that occurred in Saudi Arabia. The 

Markov chain Monte Carlo technique is used in the process of estimating and 

fitting the epidemic parameters and reproduction numbers from the 

transmission model to the real data. This is done with the help of the Markov 

chain Monte Carlo algorithm. A sensitivity analysis is performed with the use 

of the Sobol method in order to discover how sensitive the estimates are to 

changes in the values of the fixed parameters. The results of this analysis are 

then used to estimate the confidence intervals. The subsequent sensitivity 

analysis revealed that a number of parameters have an impact on the number 

of deaths, indicating that the authorities have a number of options available 

to them in order to lessen the harm caused by this virus. Additionally, the 

number of deaths was shown to be influenced by a number of other 

parameters. 

 

Key words: Heterogeneity, susceptible–infect1ed–recovered–dead, Markov 

Chain. 

 

1. INTRODUCTION  

Since the COVID-19 epidemic broke out at the start of 2020, the whole globe has been in the midst of 

a serious and unprecedented international catastrophe (Zou et al.,  2006, Diibendorfer, 2005, Elaiw,  

2012.). One of the worst and potentially deadly respiratory disorders brought on by the virus is called 

acute respiratory distress syndrome (ARDS) (Elaiw, 2012). There has never before been an infectious 

illness with such a significant societal and economic consequence (Elaiw,  2014). It was a new 

coronavirus strain that caused the global outbreak of COVID-19 (Zou et al.,  2006, Liang et al., 2018, 

Kephart et al., 1993, Marchette, 2004, Ren et al., 2012). Statistical and mathematical examination 

of the given data may shed light on the propagation of the virus's trend, allowing for the rapid 

implementation of a wide range of social actions. Analysis of epidemic data is also crucial for predicting 

future trends and understanding the underlying mechanisms involved in the development of the illness. 

This allows many groups to more precisely arrange their efforts to halt the spread. 

These may be broken down into two broad categories: networked models (Jones, 1998, Elerian, 

et al., 2001, Eraker, 2001, Golightly, et al., 2006, Golightly, et al., 2008) and collective models (Mishra 

et al., 2011, Hosseini et al., 2018, Zhang et al., 2019, Bardhan et al., 2019, Batista et al., 2018, Deng and 

Chen, 2007, Deng et al., 2008). The susceptible-infected-recovered-dead (SIRD) model and its variants 

are instances of the former; together they are known as compartmental models (Ren et al., 2012, 14]. At 
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this juncture, it's worth noting that the kinetics of chemical processes in general, where a certain rate is 

connected with the transition from one state to another (Stramer et al., 2010), are very comparable to 

this occurrence. In epidemic modeling, the corresponding rates may be written in terms of the current 

counts of infected and cured people. Due to the complex interplay of various mechanisms driving 

infection transmission and recovery, a good mathematical model should be able to concurrently predict 

the temporal behavior of infected, recovered, and deceased people. The protective techniques need 

quarantine, confinement, social distancing lockdown measures, and so on, making a simple SIRD model 

unable to capture such complicated processes in general (Zhou et al., 2006),. The propagation of the 

current pandemic is modeled using a generalized version of the SIRD framework, which accounts for 

the percentages of the population that are exposed, quarantined, confined, actively infected, recovered, 

or dead at time instant t. We have shown that our model successfully accounts for the most recent data 

available for this country. Notably, the present approach is novel in that it accounts for all three reported 

data sets at once: a living, recouping, and departed populace. The model was originally implemented in 

Python before being incorporated into the Open Turns uncertainty calculation library. The data was 

retrieved from https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases, which is compiled 

by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) from various 

sources, including the World Health Organization. 

 

Talawar and Aundhakar (Talawar and Aundhakar, 2016) presented a model for infectious 

diseases, and we revisit it here. The eliminated component from the standard SIR model was 

decomposed into two categories, namely, the recovered and the dead. Additionally, the COVID19 model 

given here takes use of the infectious illness concept.  For more discuccion about  SIR models on 

epidemic diseases in KSA  see Hassan, Taher S.; Elabbasy, et al.  

In this study, we use a refined Susceptible-Infected-Recovered-Dead (SIRD) model to a time 

series of pandemic data for Saudi Arabia. In this investigation, the features and transmission mechanisms 

of COVID-19 were analyzed using a modified SIRD model that included the overall birth and death 

rates of the population. For this model, nine factors (including the beginning circumstances) had their 

probability laws estimated using data collected in Saudi Arabia from March 2, 2020 to January 4, 2022. 

The most crucial variables that regulate this pandemic's progression throughout time are estimated and 

compared. The SIRD model's parameters were determined using Markov chain Monte Carlo MCMC. 

The course of the outbreak was foreseen and accounted for by us. The use of a global sensitivity analysis 

offers a novel approach to resolving this issue. Indications of how far the epidemic's ravages were 

confined in Saudi Arabia were extracted using sensitivity analyses that made use of Taylor expansion 

and the creation of Sobol indices. In particular, we model the responses of public health officials and 1) 

estimate the virus's basic reproduction number, 2) forecast the epidemic's height, and 3) predict the 

disease's eventual extinction. Information for this research was given by the Saudi Arabian Ministry of 

Public Health. Results indicate that the highest incidence of COVID-19 in Saudi Arabia will occur 
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between June and August of 2020, with a reproduction rate of about 2.5 throughout the indicated time 

period. Moreover, with well-implemented public health measures, the epidemic curve might be lowered. 

 

2. Method 

2.1. Markov chain Monte Carlo 

According to Gasparini's suggestion in Aundhakar (Gasparini, 1997), the Markov chain Monte Carlo 

(MCMC) method is as effective as any other method for estimating parameters. By using the MCMC 

method, we have a way to quickly pull samples from the posterior distribution. To avoid implicitly 

setting the essential, the samples may estimate the unknown parameters Aundhakar (Gilks, 1996). We 

anticipate a variety of possible outcomes 𝜋(𝑥). A nonperiodic and irreducible Markov chain with a 

simple distribution of may be constructed if 𝜋(𝑥) is too complicated to pattern directly 𝜋(𝑥). Assuming 

the Markov chain is sufficiently long, we may use it to infer key properties of by treating the simulated 

price as a pattern independent of the target distribution 𝜋(𝑥). 

The posterior chance is determined using the prior chance and the probability function, as stated by 

Bayes' theorem. Let ℳ represent the real cumulative broad variety of the unidentified infected 

individuals, with ℳ = (ℳ1.ℳ2 . . . . ,ℳ𝑛 ), and let 𝛤 represent the actual cumulative wide variety of 

the unidentified infected computers, with 𝛤 = (𝛤1, 𝛤2, . . . . , 𝛤𝑛 ). It is important to remember that the 

inflammatory human population is consistent with the Poisson process, despite the fact that it is often 

believed that the population has made positive statistical errors and is incorrect. The probability of the 

cumulative wide variety of severely inflamed people is, thus, while the actual cumulative wide variety 

of inflamed people is 𝑚𝑡 at the given time t, it is as follows: 

𝑝(𝛤𝑡 = 𝑧𝑡|ℳ𝑡  = 𝑚𝑡) =
𝑚𝑡
𝑧𝑡

𝑧𝑡!
𝑒−𝑚𝑡 . 

Next, we assume that the parameter vectors are distributed uniformly throughout the set ∅ =

( 𝛽, 𝛾, 𝛿, 𝜇, 𝜈), where each parameter is treated as a separate vector.  Let 𝐿(𝛤⌊𝛽, 𝛾, 𝛿, 𝜇, 𝜈 ) be the 

probability defining function, and choose a non-facts-earlier distribution, denoted by the constant ∅∝. 

As a result, we may express the likelihood of the posterior distribution as follows: 

𝑝(𝛽, 𝛾, 𝛿, 𝜇, 𝜈|𝛤) = 𝐿(𝛤⌊𝛽, 𝛾, 𝛿, 𝜇, 𝜈)𝑝(𝛽, 𝛾, 𝛿, 𝜇, 𝜈|𝛤) 

∝∏𝑝(𝑧𝑗⌊𝛽, 𝛾, 𝛿, 𝜇, 𝜈)

𝑛

𝑗=1

 

∝∏
𝑚𝑡
𝑧𝑡

𝑧𝑡!
𝑒−𝑚𝑡

𝑛

𝑗=1

. 

First, given the prior distribution, and the initial time 𝑡 = 0, derive the initial vector value ∅(0) =

( 𝛽(0),  𝛾(0),  𝛿(0), 𝜇(0), 𝜈(0)). 
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Second, draw the ∅′ from the concept distribution 𝑞(∅|∅(𝑡)) and draw a random number 𝑣 from uniform 

(0, 1), calculate the popularity probability. 

𝛼 =  𝑚𝑖𝑛 {1,
𝑝(∅′|𝑧)

𝑝(∅|𝑧)
},   if 𝜔 ≤ 𝛼, 

 

Third, change 𝑡 to 𝑡 + 1 and burn inside the potentially dangerous range of ∅𝑡+1. 

 

Fourth. The loop closes when t becomes sufficiently large. 

 

The Markov chain obtained using this method is very accurate in terms of convergence speed and 

stability, and the estimate outcomes of the version parameters are good as well. 

 

2.2 Sobol Sensitivity Analysis 

Sobol's method relies on a growing-dimensionality decomposition of the variance in the 

model's output into summands of variances in the input parameters (Saltelli et al., 1999, Sobol, 

1993). Using a sensitivity analysis based on the Sobol function, one may ascertain the relative 

importance of each input parameter and the interactions between them in explaining the overall 

output variance. The purpose of a Sobol sensitivity analysis is to determine how much variation 

in model results depends on each of the input parameters, whether it be a single parameter or 

the interaction between many parameters. In a Sobol sensitivity analysis, the output variance is 

decomposed using the same principles as in a traditional analysis of variance in a factorial 

layout. Note that Sobol sensitivity analysis isn't necessarily aimed to identify the source of the 

entry variability. It just implies the kind and extent of the impact on version output. As a result, 

unlike a standard population PK/PD assessment, it cannot be utilized to identify the cause(s) of 

observed variation, such as the impact of demographic variables on total clearance. Selecting 

the appropriate version's output to utilize in the assessment is a crucial step in any sensitivity 

analysis, whether it local or worldwide. A positive time factor, such as Cmax for a 

concentration-time curve, or a metric that integrates changes withinside the model output of 

hobby over time, such as the duration of electrical depolarization, the included vicinity below 

a drug plasma concentration-time curve, or perhaps tumor size, are both acceptable choices. It 

is important to look at the question at hand while deciding the measure to employ. More often 

than not, the area under the concentration-time curve (AUC) is a more useful statistic of the 

version's performance. An included metric may expand over time for a variety of reasons, 

including but not limited to aging and disease (cf. ailment structures evaluation). The many 

uses of Sobol sensitivity analysis may be summarized as follows:  
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• Evaluation of the full spectrum of each input parameter variation and interactions between 

parameters;  

• No assumptions made between version inputs and outputs 

• The main downside is the high computational depth. Figure 2 depicts the key stages of the 

Sobol sensitivity analysis, which will be discussed in more depth in the following sections. 

 

Figure 2: The method for carrying out a Sobol sensitivity analysis, including a drift chart. 

 

Pre-Sobol and post-Sobol sensitivity analysis are the two most crucial phases. The Sobol 

sensitivity analysis consists of four stages: creating parameter sets, walking and simulating the 

version output with those settings, calculating and reading the total-, first-, and second-order 

and higher-order Sobol sensitivity indices, and last, reading the results. An initial parameter 

series is created through the Sobol series. I.M. Sobol of Russia initially suggested the idea of a 

quasirandomized, low discrepancy series now known as the Sobol series. Compared to random 

sequences, those with low discrepancies tend to pattern space more equally. Moreover, 

algorithms using such sequences may exhibit superior convergence (Sobol, 1967). It is 

ultimately possible to mimic version outputs using the created parameter units (Dalal et al., 

2008). The following is an index to the popular Sobol series functions: 

• The Sobol series, often known as the "quasi-random series," is a kind of low-discrepancy 

series. 

• Distributed more consistently than the bogus random sequences. 

• Faster convergence and better accuracy are the results of quasi-Monte Carlo integration. 
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• The large dimensionality of the integrals is a disadvantage. 

Total-order, first-order, second-order, and higher-order sensitivity indices are calculated to 

accurately replicate the effect of the character enter, and the interaction between them (Sobol, 

2001). This allows one to understand how the output variance can be attributed to character 

enter variables and the interplay among each of the enter variables. Let's say 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑠) 

represents the input parameters. After rescaling, it's safe to assume that all of the parameters in 

the finite c programming languages have values in the range [0,1]. Assuming that each 

parameter is independently determined and distributed equally on the interval [0,1] is helpful. 

An attribute of x, let's call it f, whose sensitivity to the entry arguments is being evaluated is the 

version's output 𝑓(𝑥). 𝑓(𝑥) is a random variable with a mean (𝑓0) and a variance (D) according 

to the probabilistic interpretation of the parameters: 

𝑓0 = ∫𝑓(𝑥)𝑑𝑥, 

𝐷 = ∫𝑓(𝑥)2 𝑑𝑥 − 𝑓0
2. 

Each and every integral may be written as a pair of integrals with [0,1] as the limits in all 

dimensions. The Sobol method relies on breaking down 𝐷 into its component parts, which 

might be the results of one parameter, the results of two parameters working together, and so 

on. In the first step, we decompose 𝑓(𝑥) into 

𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)
𝑠
𝑖=1  + ∑  𝑠

𝑖=1 ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)
𝑠
𝑖≠𝑗 +. . . . . . . +𝑓1...𝑠(1,2, . . . . ,  𝑥𝑠)            (2.1) 

Decomposition phrases are constructed as shown in [31]: 

𝑓𝑖(𝑥𝑖) = ∫𝑓(𝑥) ∏𝑑𝑥𝑘
𝑘≠𝑖

− 𝑓0 

𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) = ∫𝑓(𝑥) ∏ 𝑑𝑥𝑘
𝑘≠𝑖,𝑗

− 𝑓0 − 𝑓𝑖(𝑥𝑖) − 𝑓𝑗(𝑥𝑗) 

and so on. 

As shown in Eq. (2.2), the assessment of variance illustration of 𝑓(𝑥) is dependent on the 

happiness of the scenario, as shown in (Sobol, 2001): 

          ∫ 𝑓𝑖1,𝑖2,.....𝑖𝑠(𝑥𝑖1 , . . . . , 𝑥𝑖𝑠) 𝑑𝑥𝑘 = 0,    for  𝑘 = 𝑖1, 𝑖2, . . . . . 𝑖𝑠.                                  (2.2)   

As a result of this characteristic, we get by squaring Eq. (2.1) and integrating: 

𝐷 = ∑ 𝐷𝑖
𝑘
𝑖=1  + ∑ 𝐷𝑖𝑗𝑖<𝑗 + ∑ 𝐷𝑖𝑗𝑚𝑖<𝑗<𝑚 +. . . +∑ 𝐷12...𝑘𝑖<2<...,<𝑘 ,                               (2.3)   

where   

𝐷𝑖1,𝑖2,.....𝑖𝑠 = ∫𝑓𝑖1,𝑖2,.....𝑖𝑠
2 (𝑥𝑖1 , . . . . , 𝑥𝑖𝑠) 𝑑𝑥𝑖1 . . . . 𝑑𝑥𝑖𝑠 
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is the variance of 𝑓𝑖1,𝑖2,.....𝑖𝑠(𝑥𝑖1 , . . . . , 𝑥𝑖𝑠), referred to as the partial variance similar to that subset 

of parameters. The Sobol sensitivity indices for that subset of parameters is then described as 

                                                   𝑆𝑖1,𝑖2,.....𝑖𝑠 =
𝐷𝑖1,𝑖2,.....𝑖𝑠

𝐷
.                                              

 

To determine the first-order contribution of the ith input parameter to the output variance, we 

may use 𝑆𝑖 =
𝐷𝑖

𝐷
, while the second-order contribution of the interaction between the ith and jth 

parameters can be calculated using 𝑆𝑖𝑗 =
𝐷𝑖𝑗

𝐷
. At last, general order sensitivity indices measure 

the overall effects of a single parameter at the model's output, and they may be thought of as 

the total of all the sensitivity indices: 𝑆𝑇𝑖 = 𝑆𝑖 + 𝑆𝑖𝑗+. . . +𝑆1..𝑖....𝑠. From Eq. (2.3), we may get 

the individual sensitivity indices by dividing by 𝐷. Due to the fact that 𝑆𝑖 connects the partial 

variance to the whole variance for each parameter, it can be shown using Eq. that the total of 

the sensitivity indices for all parameters must be at least one (2.4). 

One may write this as: 

                              ∑ 𝑆𝑖
𝑘
𝑖=1  + ∑ 𝑆𝑖𝑗

𝑘
𝑖=1  +. . . +∑ 𝑆𝑖𝑗...𝑘

𝑘
𝑖=1  = 1.                                     (2.4)   

In conclusion, first-order sensitivity indices have the most bearing; they are used to measure 

the proportional contribution of a single parameter to the variance of the output. With the use 

of second-order sensitivity indices, we may quantify the relative importance of parameter 

interactions in determining the overall output variance. All first-order, second-order, and 

higher-order findings are recorded, as well as the overall assessment across all parameters, in 

total order sensitivity indices. Higher sensitivity index costs have a larger impact on the 

corresponding version parameters and related processes. Despite the fact that no exceptional 

cutoff value has been established, the rather arbitrary number of 0.05 is routinely used in this 

kind of assessment to differentiate between essential and inconsequential factors. Although this 

0.05 criterion is usually used to more complex designs, it is crucial to remember that it may no 

longer be rigorous enough for designs that are reasonably easy and only have a few input 

parameters. 

 

3. The Model Formulation 

3.1. The SIRD model 

In contrast to the standard SIR model, we are independently assessing the many different cases 

that ended in death and the recovered cases. Therefore, we may utilize variables like 

"Recovered" and "Deaths" instead of "Recovered + Deaths" in SIR's mathematical model 𝑆
β
→𝐼
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δ
→𝑅, 𝐼

δ
→𝐷. Assumption: 𝑆 = susceptible (= population - confirmed), 𝐼 = infected (= confirmed 

- recovered - fatal), 𝑅 = recovered, and 𝐷 = deceased. 

 

 

 

Figure 1 . The SIRD model shows the percentage of healthy (susceptible) people who develop 

inflammation after coming into touch with an inflamed person. 

 

Illustration of the SIRD model. β represents the percentage of healthy (susceptible) folks that turn 

out to be inflamed after touch with an inflamed person. In different words, it's far the transmission 

price of the virus. γ denotes the healing price, and δ the mortality price related to the virus. 

𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

𝑁
,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝛾 + 𝛿)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

𝑑𝐷

𝑑𝑡
= 𝛿𝐼,

 

where 𝛿 is the mortality rate [1/min], 𝛽 the powerful touch rate in milliseconds, 

and the recovery rate [1/min]. 𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝐷 represents the entire 

population, and 𝑡 is the time since the start date. The virus's cost per duplicate is 

ℛ0 =
𝛽

𝛾 + 𝛿
. 

3.2 The SIRD model with births and deaths 

In the SIRD version, everyone is assumed to remain unchanged during the pandemic. Due to 

the presumption that persons were healthy when they were born, we modified the first line of 

the SIRD version to read: 𝜇(𝑁 − 𝐷) = 𝜇(𝑆 + 𝐼 + 𝑅). For this reason, we decided to add 
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complexity to the SIRD model by including birth and death rates alongside initial capital 

investment. This figure shows how the aforementioned system behaves dynamically. 

 

 

Figure 2 depicts the SIRD variant with the population's initial and final costs included. 

 

Note that the definitions of and v are switched in this version, as opposed to the 

CNRS article (Bayette, and Monticelli, 2020). Summing the populations of the healthy 

(S), infected (I), and withdrawn (R) with the slanted (S) populations reveals that 

the newborns are obviously not dead. When S, I, and R populations are subtracted 

from those who died due to factors other than the virus, the following ODE system 

is generated: 

{
 
 

 
 
𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

𝑁
+ 𝜇(𝑆 + 𝐼 + 𝑅) − 𝜈𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝛾 + 𝛿)𝐼 − 𝜈𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜈𝑅,

𝑑𝐷

𝑑𝑡
= 𝛿𝐼.

                                             (3.1)                                                    

At 𝐼 = 0, one gets 𝑅 = 0. It is important to remember that in the SIRD model, the total 

population 𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝐷 is not necessarily consistent, in contrast to the SIR and SIRD 

models. Sure enough, we have 

𝑑𝑁

𝑑𝑡
= (𝜇 − 𝜈)(𝑆 + 𝐼 + 𝑅). 

As a result, if 𝜇 >  𝜈, the total population grows; if 𝜇 =  𝜈, the population stays the same; and 

if 𝜇 <  𝜈, the population shrinks. To get the virus's reproduction rate,  

ℛ0 =
𝛽

𝛾+𝛿+𝜈
, we solve the ODE for the number of infected (I) in the system (SIRD). 
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It is well knowledge that if ℛ0 > 1, the virus will stop spreading, and if ℛ0 < 1, the virus will 

start spreading again. Our current implementation is a Python program using a fourth-order 

Runge-Kutta algorithm. The subsequent repercussions model is provided by us. 

 

Figure 3 – The consequences of the implementation of the SIRD version with the coefficients 

𝛽 =  0.615, 𝛾 =  0.193, 𝛿 =  0.06 fixed.  

The initial conditions are 𝑆0 =  25216237 −  2𝑒4, 𝐼0  =  2𝑒4, 𝑅0  =  0, 𝐷0  =  0, and the 

simulation time is T = 35 days. 

4. Results 

4.1. Parameter estimation 

The likelihood distributions shown here are estimated using the values of five version 

parameters: parameters 𝛽, 𝛾, 𝛿, 𝜇,  and 𝜈. This requires making distribution estimates for 

parameters 𝛽, 𝛾, 𝛿, 𝜇,  and 𝜈. New demographic data are needed to make this happen. The 

estimate of version parameters helps us predict the version with more precision. Parameter 

estimation poses significant challenges. Though many characteristics may be anticipated, the 

process is laborious and expensive. The SIRD Covid-19 version's unknown parameters are 

estimated using the Markov chain Monte Carlo (MCMC) technique in Equation (3.1). 
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4.1.1 Generation of the Input-Output Relationship 

 

Starting in January 2020, at the beginning of the Coronavirus epidemic (see 

https://coronavirus.jhu.edu/data/new-cases) , the Johns Hopkins University CSSE 6 (CSSE, 2021a) 

started accumulating data. A associated GitHub repository with daily updates contains the 

relevant data (CSSE, 2021b). We obtained documents pertaining to Saudi Arabia between 

March 2, 2020 and January 4, 2022. The three time series that make up this document are shown 

in Figure 4; they are the ranges of cases that were shown, cases that were deceased, and cases 

that were retrieved. 

 

 

 

 

 

Figure 4 –The numbers of cumulative numbers. 

https://coronavirus.jhu.edu/data/new-cases
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Changes in COVID-19 in Saudi Arabia between January 22, 2020 and September 13, 2022 

analyzed using data from the Johns Hopkins University database. Once the raw documents 

have been collected, we'll sort them into categories based on the characteristics of relevance 

to the SIRD model. No population census has been carried out in the area between the 

observation dates. On this day in 2022 (May 27), there are N=35,841,311 people living in 

Saudi Arabia. The great number of died instances, the large number of recovered instances, 

the large number of shown instances, and the large number of detected and recovered 

instances all have the following relationships with one another (discover 5). Do not forget that 

Susceptible is calculated by dividing the entire population by the actual number of 

occurrences. 

 

 

Figure 5. Pre-processed data in Saudi Arabia between January 22, 2020 and January 4, 2022. 

After the data has been preprocessed and classified, the determined inputs and outputs may be 

made. But first, we need to zero down on a time period to perform our analysis. As was 

previously noted, the first COVID-19 instance was discovered in Saudi Arabia on March 2, 

2020, and it was not seen again until January 4, 2022. Within this time frame, we undertake 

observations that are similar to those in a simulation over a period of 15 days. Out of them, 

we've been able to glean 85 that really work. Put another way, if the machine's country at time 

𝑡 is 𝑋(𝑡), then the value of the determined input is 𝑋(𝑡)and the value of the determined output 

is 𝑋(𝑡 + 15). Consistent with the code below, whose results are shown in Figure 6. These data 

allow for an estimation of the parameters. Considering the brief period of the simulation (15 

days) inside the observation window, it is vital to remember that the information has a linear 

shape, which we may take use of in the following. 

 



University of Ha’il-Journal of Science (UOHJS) Vol(X) No(X), 20XX 

 

13 

 

 

Figure 6. The observed processed data between March 2, 2020 and January 4, 2022. 

4.1.2 Estimation of parameters by calibration 

The data we've collected so far allows us to make estimates for the parameters in which we 

have the most confidence. To do this, we make use of Open Turns. As a first step in contributing 

our Python-based SIRD implementation to the Open Turns initiative, we create a Python 

Function type item. Then, we use the Linear Least Squares Calibration Method to make 

estimates for the parameters 𝛽, 𝛾, 𝛿, 𝜇, 𝜈. Figure 6 shows that this estimator was chosen because 

of the linearity of the data it contains. By linearizing the model, this estimator helps to reduce 

the discrepancy between the estimated and observed values. Additionally, it generates a 

selectable state (named "prior") with values of 0.467, 0.4, 0.001, 0.0001, and 0.00019. After 

estimating these five parameters at random, the table below displays their chance distributions 

along with their corresponding normal distributions for means, standard deviations, and 95% 

highest and lowest CIs. We can estimate the parameters that have a high level of confidence in 

the records we have determined now that we have them.We use Open Turns for this. To begin, 

we develop a Python. 

 

Parameters Reference 

value 

Mean Standard 

deviation 

Lower CI 

 

Sup IC 

𝛽 0.181661 0.181661 0.00336377 0.155926 0.207396 

𝛾 0.0554433 0.0554433 0.00116208 0.0465527 0.064334 

𝛿 0.0148682 0.0148682 0.000431601 0.0115662 0.0181702 

𝜇 0.00206816 0.00206816 0.00223205 -0.0150084 0.0191447 

𝜈 0.00207206 0.00207206 0.00223195 -0.0150038 0.0191479 

Table 1 – Results of parameter estimation of SIRD in KSA. 

 

The "prior" price is the only one that the Open Turns linear least squares estimator has access 

to. The so-called "posterior" values, which were received after the estimate, are listed in the 

four columns that follow. It is exciting to note that the estimate is not always aberrant due to 
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the fact that the parameters μ and ν and are nearly identical and perfectly correlated after 

calibration, ensuring the experiment's general population's fidelity. Figure 7 shows how our 

parameter estimation system looks. 

 𝛽 𝛾 𝛿 𝜇 𝜈 

𝛽 1 0.948017 0.116023 0.988281 0.988251 

𝛾 0.948017 1 -0.0328953 0.919966 0.919933 

𝛿 0.116023 -0.0328953 1 0.0201733 0.0200674 

𝜇 0.988281 0.919966 0.0201733 1 1 

𝜈 0.988251    0.919933    0.0200674   1 1 

Table 2 – Correlation matrix after estimating the different parameters of SIRD in KSA.  

 

The following contains the five independent parameters that may be utilized with this 

evaluation matrix. Remember that a study quite comparable to ours was conducted by 

Nguemdjo et al. and published in August 2020. This research also used a SIR version to forecast 

the development of COVID-19 in Saudi Arabia from March 2, 2020 and January 4, 2022. The 

parameters 𝛽 and 𝛾, were determined using a maximum likelihood estimator and are listed 

below. Observe how the consequences shown above vary from ours in terms of the parameters 

𝛽 and 𝛾 and Notably, the virus spreads far more slowly amongst humans. That our selected 

time span, beginning on March 2, 2020, and ending on January 4, 2022, concludes just before 

the epidemic's peak, the lower in 𝛽 provides a unique characterization of this differentiation. 

Between March 2, 2020 and January 4, 2022, the Saudi Arabian government has enough 

opportunity to beef up containment measures, lowering the chance of the virus spreading 

outside of the country. 

 

 

4.2 Application of Sobol Sensitivity Analysis 

In order to assess the robustness of our SIRD model, we shall conduct a sensitivity analysis. 

We decide to explore the model's impact on the initial parameters in addition to the parameters 

stated before. Finally, we may test how 𝑆, 𝐼, 𝑅, and 𝐷 vary depending on the values of the 

parameters 𝛽, 𝛾, 𝛿, 𝜇, 𝜈. It is essential to initially collect distributions for all of these factors. 

Previous to this section, predictions were produced for the first five parameters. They will most 

likely act in accordance with standard protocol. The values of 𝑆0, 𝐼0, 𝑅0, and 𝐷0 in the 

beginning condition are shown in Figure 5 to adhere to the same patterns as 𝑆, 𝐼, 𝑅, 𝑎𝑛𝑑 𝐷. It is 

clear that Beta rules may be used as a close approximation for those regulations between March 

2, 2020 and January 4, 2022. As an example, Table 3 shows the results of an open run when 
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this is implemented. Figure 9's QQ-plot convincingly demonstrates why we choose Beta 

distributions. 

 

Parameters alpha beta a b 

𝑆0 0.935242 0.348363 4.47806e+07 4.49106e+07 

𝐼0 0.563381 1.02904 -405.235 42259.2 

𝑅0 0.176244 0.586377 -830.588 85550.6 

𝐷0 0.417359 1.34975 -9.52941 981.529 

 

Table 3 – In light of the observations depicted in Figure 5, intuition-based estimation of the Beta 

laws and initial parameters. 

 

Figures 10 and 11 show that the two most important elements affecting the distribution of 

vulnerable times for the Saudi Arabian population are the initial investment and the final 

investment 𝜈. The final inflamed range obtained from a simulation is primarily affected by the 

beginning inflamed range. This same range is critical for counting the final tally of survivors 

and casualties. Also, remember that the mortality rate 𝛿 of the virus is only one of several 

variables that affect the total number of deaths. 

 

 

 

Figure 9 – Utilizing QQ-plots to confirm the selection of Beta laws for the initial 

conditions. 
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Figure 10 – Taylor expansion of the first order for sensitivity analysis. 

 

Figure 11 – The calculation of first-order and total Sobol indices for sensitivity analysis. 

 

The results are independent of the beginning circumstances because of the linear character of 

this constrained growth. Table 2 shows that when two variables are evaluated and both have 

indices, the total index is usually different from the first-order index. This suggests that the 

variables interact. To test the robustness of our SIRD model, we shall conduct a sensitivity 

analysis. In addition to the parameters discussed before, we have opted to look at the effect the 

model has on its starting values. Last but not least, we'll have a look at how sensitive certain 

quantities are to changes in the initial values of the parameters 𝛽, 𝛾, 𝛿, 𝜇, 𝜈. First, we need to 

collect data on the ranges within which these parameters tend to fall. The first five parameters 

𝛽, 𝛾, 𝛿, 𝜇, 𝜈 and, were estimated in the previous section. In this report's code, using the same 

study window as Nguemdjo et al. does work, but it decreases the amount of the observed data 

and introduces an accuracy loss when estimating parameters. 
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4.3 Epidemic Forecasting 

4.3.1 Distribution of 𝓡𝟎 

 

Our projections of the virus's future evolution are based on its current spread and its 

reproduction rate, ℛ0 =
𝛽

𝛾+𝛿+𝜈
. The paper's second portion evaluated the parameters β, γ, δ, and 

ν by which the laws,, and were governed. Probability density of ℛ0 is shown in the table below. 

For a more audacious forecast, we suggest simulating the behavior of each group for an 

additional 15 days after our research ends (between March 2, 2020 and January 4, 2022). 

To rephrase: we know exactly how many people will call Saudi Arabia home on June 29, 2020. 

Here is the resulting picture. On the assumption that the distributions are uncorrelated and 

independent, the marginals of the posterior distribution are retrieved. There is a high probability 

that the virus will continue to spread, as it has been doing so in Saudi Arabia since January 4, 

2022. 

 

Figure 12. Propagation density function of a virus. With a mean of 1.04928 and a standard 

deviation of 0.0160945, this rule seems to be perfectly typical. 

 

 

4.3.2 Determine the S, I, R, and D law parameters as a function of time. 

When deciding which laws to follow, we rely on our gut feelings. These distributions will be 

used in the next sensitivity analysis. Both populations are shown in two separate figures due to 

the huge discrepancy in scales of measurement. This simulation comes extremely near to 
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describing the conditions in Saudi Arabia on the given day. By definition, the farther back in 

time you try to anticipate, the less accurate your results will be. 

 

 

Figure 13 – Prediction of the population's condition on June 29, 2020, in Saudi Arabia. 

Discussion 

The SIRD COVID-19 model describes the properties and transmission mechanism of this 

virus. To enhance the study of the SIRD COVID-19 model, we use the MCMC technique to 

estimate the unknown parameters. The knowledge we have gained about COVID-19 will 

allow us to better manage and avoid it in the future. Inadequately chosen prior parameters 

may prevent or delay convergence in the MCMC method. Furthermore, if the previous 

parameter values were picked wrong, either the samples are oversampled around the boundary 

or the results do not converge. Because of the importance of the core problem, the above 

criteria must be chosen with care. A deterministic model, applicable to other viruses, 

describes the behavior of COVID-19. This approach is useful for dealing with a wide variety 

of viruses. 

Conclusion 

 In this work, we presented a SIRD model to replicate the illness epidemic 

that occurred in KSA. We used the Markov chain Monte Carlo technique is 

used in the process of estimating and fitting the epidemic parameters and 

reproduction numbers from the transmission model to the real data. The 

SIRD system of the proposed SIRD system is carried out via the Sobol 

method. Also, we gave some useful conclusions at the end of this work.  
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The present COVID -19 pandemic in Saudi Arabia prompted a modification of the traditional 

SIRD model for the purpose of analyzing the temporal development of the transmission of 

infection. 

- It is shown that the model accounts for the observed distribution of all three types of data for 

Saudi Arabia (active, recovered, and deceased). 

- This model quantifies the importance of confinement and quarantine in preventing the 

spread of an infectious disease, and it takes into account real-world factors like asymptomatic 

people, the possibility of transmission through the surface or the air, etc. 

- The data from Saudi Arabia demonstrates that there is an inverse association between delay 

and the rate of quarantine. 

- This study demonstrates that the model is just as applicable to describing the epidemic in 

Saudi Arabia, despite the fact that the rate constants vary considerably. This could be because 

of variations in things like innate and acquired immunity, lifestyle choices, environment, 

food, societal preventative measures, etc. This fact requires more consideration in future 

research. 

- in  future work we will discuss the memory effect on the proposed SIRD model and 

Dynamic analysis for the proposed SIRD model should be stated in the future work 
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