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Abstract: 
This study presents a Covid-19 modified SEIR model that uses a fractional derivative 

in the sense of Caputo. The existence, uniqueness, and boundedness of the solution of 

the proposed model are established. The basic reproduction number ℛ0 is calculated. 

Using the Lyapunov-LaSalle theorem, local and global stability of free-infected and 

endemic equilibrium points were established. In addition, perform a sensitivity 

analysis to determine how parameter changes affect the transmission of early-stage 

illness. Statistical sensitivity analysis has shown that ℛ0 is the most sensitive to the 

density of Covid-19. The Adams-Bashforth Fractional method is used to iteratively 

calculate the solution of the model. 
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1. Introduction 

The outbreak of coronavirus disease (Covid-19) is one of the largest public health problems in the world. 

Due to its high contagious nature, Covid-19 has caused widespread illness and death in almost every 

country in the world. Accurately counting the basic reproduction number ℛ0 helps the decision-makers 

in implementing efficient control strategies. Meanwhile, on Monday, March 2, 2020, the Saudi 

Arabian Ministry of Health announced that the first case of a new Covid-19 was detected in citizens 

arriving at sea from Iran. Statisticians have recently stepped up their efforts to study Covid-19. Various 

statistical and machine learning-based predictive models have been proposed to estimate the new 

number of cases in Covid19. Many strategies for developing time-series models have been proposed to 

predict coronavirus disease in Saudi Arabia, but the applicability of these methods to specific time-series 

data is more difficult (Huang et al, 2020; Pan et al, 2020; Boldog et al, 2020; Chan et al, 2020; Chen et al, 2020; 

Chen et al, 2020; Xiong, 2020).  

In this study, a modified SEIR epidemiological model is used to estimate ℛ0 of the new coronavirus 

disease in Saudi Arabia and to predict how Covid-19 would evolve. Fractional models are a useful tool 

for modelling real-world situations and have a wide range of applications (Aguila-Camacho et al, 2014; 

Alshehri et al, 2020; Alshehri et al, 2021; Boukhouima et al, 2017; Choi et al, 2014; Li et al, 2016; Li 
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et al, 2017; Muhammad and Abdon, 2020; Podlubny, 1999; Saber, 2022; Salem et al). The proposed 

model is a generalized quadratic nonlinearity for four unknowns’ compartments namely, susceptible (S), 

exposed (E), infected (I), and recovered individuals (R). The problem statement you are solving has 

been investigated for Covid-19 in several papers see (Ahmad et al, Aletreby et al, 2020; Algaissi et al, 

2020; Anderson et al, 2020; Boldog et al, 2020; Chan et al, 2020; Chen et al, 2020; Dur-e-Ahmad and 

Imran, 2020; Gao et al, 2020; Huang et al, 2020;  Khoshnaw et al, 2020; Kuniya, 2020; Linka et al, 

2020; Liang, 2020; Liu et al, 2020; Pan et al, 2020; Salem et al; Xiong, 2020; Zhao, 2020). More 

precisely, the SEIR model of fractional order 𝐷𝜈, 0 < 𝜈 ≤ 1, in the sense of Caputo, is considered and 

expressed as: 

𝐷𝜈𝑆(𝜏) = 𝜅 − 𝜁𝑆(𝜏)𝐼(𝜏) − 𝜇𝑆(𝜏), 

                                                               𝐷𝜈𝐸(𝜏) = 𝜁𝑆(𝜏)𝐼(𝜏) − 𝜀1𝐸(𝜏),                                                        (1.1) 

𝐷𝜈𝐼(𝜏) = 𝛾𝐸(𝜏) − 𝜀2𝐼(𝜏), 

𝐷𝜈𝑅(𝜏) = 𝛿𝐸(𝜏) + 𝛼𝐼(𝜏) − 𝜇𝑅(𝜏), 

with initial data 𝑆(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0. The biological meanings of the 

parameters in (1.1) are listed in Table 1.  

The purpose of this study was to gain a better understanding of the dynamics of Covid-19's transmission 

to humans. Based on data on the Covid-19 epidemic in Saudi Arabia, we wanted to identify the best 

protocols, controls, and strategies to contain the outbreak. In addition, data from Covid-19 in Saudi 

Arabia were collected from April 5, 2020, to October 2021. As a result, a statistical sensitivity analysis 

is performed to determine how changes in the parameters affect the transmission of early-stage disease. 

Statistical sensitivity analysis shows that ℛ0 is the most sensitive to the density of Covid-19. 

 

2. Properties of Solutions 

Denote ℝ+
  the set of all semi-positive real numbers and assume that 

Ω = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℝ+
4 ,   S ≥ 0,   E ≥ 0, I ≥ 0, R ≥ 0, max(|S|, |E|, |I|, |R|) ≤ Π }. 

Denote by the Mittag Leffler function M𝜈,1(𝜏) as 

M𝜈,1(𝜏) = ∑
𝜏k

Γ(𝜈k + 1)

∞

k=0

> 0, 

where Γ(z) = ∫ e−𝜏𝜏z−1∞

0
dt is the Euler gamma function. If 𝜈 ∈ ℝ+

 is a non integer order, the 

fractional integral 𝐽m
𝜈 ψ(𝜏) of the function ψ: ℝ+

 ⟶ ℝ is defined by 

𝐽m
𝜈 ψ(𝜏) =

1

Γ(𝜈)
∫(𝜏 − 𝜃)𝜈−1ψ(𝜃) d𝜃,      𝜏 ≥ m.

t

m

 

Definition 1 (Podlubny, 1999). For 𝑛 −  1 <  𝜈 <  𝑛, 𝑛 ∈  ℕ, the Caputo fractional derivative 

 m
𝜈 𝐷𝜈ψ(𝜏), of order 𝜈 >  0, is defined as  

 m
𝜈 𝐷𝜈ψ(𝜏) =

1

Γ(𝑛 − 𝜈)
∫

ψ(𝑛)(𝜃)

(𝜏 − 𝜃)𝜈+1−n
 d𝜃,      𝜏 ≥ m.

t

m

 

Lemma 1. (Li et al, 2017) , Lemma 3. If D𝜈ψ(𝜏), 0 <  𝜈 <  1, exists and satisfies 



University of Ha’il-Journal of Science (UOHJS) Vol(X) No(X), 20XX 

3 

 

{
𝐷𝜈ψ(𝜏) ≤ −𝜔 ψ(𝜏) + 𝜇,      𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏,

ψ(𝜏0) = ψ𝜏0
,

 

for a function ψ(𝜏), with (𝜔, 𝜇) ∈ ℝ 
2 , ω ≠ 0, then 

ψ(𝜏) ≤ (ψ(𝜏0) −
𝜇

𝜔
)M𝜈,1(𝜏)[−𝜔(𝜏 − 𝜏0)

𝜈] +
𝜇

𝜔
. 

Proposition 1 (Li et al, 2017). With respect to 𝜏 ≥ 0 and 𝜎0  =  (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) ∈ 𝛺, the 

solution 𝜎 = (𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), 𝑅(𝜏)) ∈ 𝛺 to the fractional order model (1.1) is unique  

Proof. Assume that 𝑊(𝜎) = (𝐺1(𝜎), 𝐺2(𝜎), 𝐺3(𝜎), 𝐺4(𝜎), 𝐺5(𝜎)) is a mapping with 

𝐺1(𝜎) = κ − 𝜁𝑆(𝜏)𝐼(𝜏) − 𝜇𝑆(𝜏), 

𝐺2(𝜎) = 𝜁𝑆(𝜏)𝐼(𝜏) − 𝜀1𝐸(𝜏), 

𝐺3(𝜎) = 𝛾𝐸(𝜏) − 𝜀2𝐼(𝜏), 

𝐺4(𝜎) = 𝛿𝐸(𝜏) + 𝛼𝐼(𝜏) − 𝜇𝑅(𝜏). 

Hence, for 𝜎, 𝜎̅  ∈  𝛺, one obtains  

‖𝑊(𝜎) − 𝑊(𝜎̅)‖ = |𝐺1(𝜎) − 𝐺1(𝜎̅)| + |𝐺2(𝜎) − 𝐺2(𝜎̅)| + |𝐺3(𝜎) − 𝐺3(𝜎̅)| + |𝐺4(𝜎) − 𝐺4(𝜎̅)| 

                            ≤ (𝜂𝐼 + 𝜇)|𝑆̅ − 𝑆| + (𝜀1 + 𝛾 − 𝛿)|𝐸̅ − 𝐸| + (𝜁𝑆 − 𝜀2 + 𝛼)|𝐼 ̅ − 𝐼| + 𝜇|𝑅̅ − 𝑅|  

                            ≤ ℓ|𝜎 − 𝜎̅|, 

where 

ℓ = max{𝜂Π + 𝜇, 𝜀1 + 𝛾 − 𝛿, 𝜁Π − 𝜀2 + 𝛼, 𝜇 }. 

Therefore, the Lipschitz condition for 𝐺(𝜎) is satisfied. As a result, the solution of (1.1) exists and 

unique. 

Proposition 2 (Li et al, 2017). The fractional-order model (1.1) has non-negative solution. 

Proof. One has 

𝐷𝜈𝑆(𝜏)|𝑆=0 = κ > 0, 

𝐷𝜈𝐸(𝜏)|𝐸=0 = 𝜁𝑆𝐼 > 0, 

𝐷𝜈𝐼(𝜏)|𝐼=0 = 𝛾𝐸(𝜏) > 0, 

𝐷𝜈𝑅(𝜏)|𝑅=0 = 𝛿𝐸(𝜏) + 𝛼𝐼(𝜏) > 0. 

Thus, by using Lemmas 5 and 6 in (Choi et al, 2014), the solution of (1.1) is semi-positive. 

Proposition 3 (Li et al, 2017). The fractional-order model (1.1) has uniformly bounded solutions start 

in 

𝛶 = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ 𝛺+,   0 ≤ 𝑁 ≤
𝜇

𝑘
}, 

where 𝑁(𝜏) = 𝑆(𝜏) + 𝐸(𝜏) + 𝐼(𝜏) + 𝑅(𝜏). 

Proof. The total population 𝑁(𝜏) at time 𝜏 satisfies  

𝐷𝜈𝑁(𝜏) = 𝑘 − (𝜇𝑆(𝜏) + (𝜀1 − 𝛾 − 𝛿)𝐸(𝜏) + (𝜀2 − 𝛼)𝐼(𝜏) + 𝜇𝑅(𝜏)) ≤ 𝑘 − 𝜔𝑁(𝑡), 

where 𝜔 = 𝑚𝑖𝑛{𝜇,   𝜀1 − 𝛾 − 𝛿, 𝜀2 − 𝛼, 𝜇  }. Thus 

𝐷𝜈𝑁(𝜏) + 𝜔𝑁(𝜏) ≤ 𝑘. 

From Lemma 9 in (Choi et al, 2014), 
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0 ≤ 𝑁(𝜏) ≤ 𝑁(0)𝑀𝜈(−𝜔𝜏𝜈) + 𝜏𝜈𝑀𝜈,𝜈+1(−ω𝜏𝜈), 

where 𝑀𝜈  is the Mittag-Leffer function. Therefore, one obtains: 

0 ≤ 𝑁(𝜏) ≤
𝑘

𝜔
,      𝜏 ⟶ ∞, 

(see (Boukhouimaet al, 2017) ; Lemma 5 and Corollary 6). Thus, in the region Υ, the solution of (1.1), starting in 

𝛺, is uniformly bounded. 

Proposition 4 (Aguila-Camacho et al, 2014). Let 𝑦 =  0 be an equilibrium of non-autonomous 

fractional order system 

{
𝐷𝜈𝑦(𝜏) =  𝑓(𝜏, 𝑦),

𝑦(0) = 𝑦0.
 

Let 𝛺 ⊆  𝑅𝑛 be the domain containing 𝑦 =  0, and let 𝐿(𝜏, 𝑦) ∶  [𝜏0,∞]  ×  𝛺 →  𝑅 be a continuous differentiable 

function such that 𝑊1(𝑥)  ≤  𝐿(𝜏, 𝑥)  ≤  𝑊2(𝑥) and 

𝐷𝜈𝐿(𝑡, 𝑥)  ≤  − 𝑊3(𝑥), for 𝜏 ≥  0, 𝑦 ∈  𝛺, 

where 𝑊1(𝑥), 𝑊2(𝑥), 𝑊3(𝑥) are continuous positive functions on 𝛺 and 𝐿 is Lyapunov candidate function, then 

𝑦 =  0 is asymptotically stable globally. 

Proposition 5 (Delvari et al, 2012). If y(𝑡) ∈ 𝑅 is a continuous differentiable function, then for all 𝜈 ∈ (0,1), 
1

2
𝐷𝜈𝑦2(𝜏) ≤ 𝐷𝜈𝑦(𝜏),    for any 𝜏 ≥  𝜏0. 

3 Methods 

By constructing the appropriate Lyapunov function, the local and global stability of the free and endemic 

equilibrium points will be studied. First, calculate the basic reproduction number as follows. 

3.1 Computing the basic reproduction number  
Let 𝑥 =  (𝑆, 𝑅)𝑇  and 𝑦 =  (𝐸, 𝐼)𝑇, then we have 

𝐷𝜈𝑦 = Å(𝑦) − ℬ(𝑦), 

where 

Å(𝑦) = [
𝜁𝑆𝐼
0

] ,   ℬ(𝑦) = [
𝜀1𝐸(𝑡)

−𝛾𝐸(𝑡) + 𝜀2𝐼(𝑡)
]. 

At the infection-free equilibrium point 𝑃0, the Jacobian matrices 𝐻 and  𝐾 of the two matrices Å(𝑦) and ℬ(𝑦),  

are respectively given by 

𝐻 = [0
𝜁𝑘

𝜇
0 0

] ,   𝐾 = [
𝜀1 0
−𝛾 𝜀2

]. 

Therefore 

𝐾−1 =

[
 
 
 

1

𝜀1
0

𝛾

𝜀1𝜀2

1

𝜀2]
 
 
 

. 

The spectral radius 𝜌(𝐻.𝐾−1) of the matrix 𝐻.𝐾−1 is given by 

𝜌(𝐻.𝐾−1) =
𝜁𝛾𝑘

𝜇𝜀1𝜀2
. 

So, ℛ0 is given by 

ℛ0 =
𝜁𝛾𝑘

𝜇𝜀1𝜀2
. 
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Moreover, on can derive the following 

ℛ0 =
𝜁𝛾𝑘

𝜇𝜀1𝜀2
=

𝜁𝛾𝑘

𝜇(𝜇+𝛼)(𝜇+𝛾+𝛿)
. 

 

3.2 Stability analysis of the free equilibrium point 

If 𝐼 =  0, one can obtain the infection-free equilibrium point 𝑃0 = (
𝑘

𝜇
, 0,0,0).  

Lemma 2. 𝑃0 = (
𝑘

𝜇
, 0,0,0) is locall asymptotic stable in 𝛺 If ℛ0 < 1, and unstable if ℛ0 > 1. 

Proof. The Jacobian matrix 𝐽(𝑃0), at 𝑃0 = (
𝑘

𝜇
, 0,0,0),  for the fractional-order model (1.1) is given by 

𝐽(𝑃0)  =

[
 
 
 
 
 
 −𝜇 0 −

𝜁𝑘

𝜇
0

0 −𝜀1

𝜁𝑘

𝜇
0

0 𝛾 −𝜀2 0
0 𝛿 𝛼 −𝜇]

 
 
 
 
 
 

, 

and its characteristic equation is given by 

                                                       (𝜆 + 𝜇)2 (𝜆2 + (𝜀1 + 𝜀2)𝜆 + 𝜀1𝜀2 −
𝜁𝑘𝛾

𝜇
) = 0.                                    (3.1) 

From Eq. (3.1), the eigenvalues are: 𝜆1 = 𝜆2  =  −𝜇 and the other values can obtain from the equation 

                                                                    𝜆2 + (𝜀1 + 𝜀2)𝜆 + 𝜀1𝜀2 −
𝜁𝑘𝛾

𝜇
= 0.                                    (3.2) 

Then, 𝑃0 = (
𝑘

𝜇
, 0,0,0) is stable according to the Routh-Hurwits (Hurwitz, 1964) criterion if and only if all the 

eigenvalues 

are <  0. Obviously, the eigenvalues 𝜆1, 𝜆2 are all negatives. Thus, the stability of Eq. (3.2) depends on whether it 

is 𝜆3 < 0, 𝜆4 < 0, or not. If ℛ0 < 1, 𝜆3, 𝜆4, is computed directly, the sufficient stability condition is given by ℛ0 <

1. That is, the required and adequate condition is ℛ0 < 1that the system (1.1) is local asymptotic stable at 𝑃0. 

Otherwise, when ℛ0 > 1, the system (1.1) is unstable.  

Lemma 3. If ℛ0 < 1, 𝑃0 is global asymptotic stable and unstable if ℛ0 > 1.  

Proof. Construct an effective Lyapunov function as follows: 

𝐿1 = 𝛾𝐸 + 𝜀1𝐼. 

Then 

𝐷𝜈𝐿1 = 𝛾𝐷𝜈𝐸 + 𝜀1𝐷
𝜈𝐼 

= (𝜁𝛾𝑆 − 𝜀1𝜀2)𝐼 

≤ (𝜁𝛾𝑆∗ − 𝜀1𝜀2)𝐼. 

Therefore, if ℛ0 < 1, then 𝐷𝜈𝐿1 ≤ 0.. In addition, {(S, E, I, R)  ∈  Ω , 𝐷𝜈𝐿1 ≤ 0 } is the largest invariant set. 

Thus, 𝑃0 is asymptotically stable globally by using the invariance principle of LaSalle (LaSalle, 1976). 

 

3.3 Stability analysis of the endemic equilibrium point 

For 𝐼∗ >  0, one obtains 

0 = κ − 𝜁𝑆∗𝐼∗ − 𝜇𝑆∗, 

0 = 𝜁𝑆∗𝐼∗ − 𝜀1𝐸
∗, 

0 = 𝛾𝐸∗ − 𝜀2𝐼
∗, 

0 = 𝛿𝐸∗ + 𝛼𝐼∗ − 𝜇𝑅∗. 

By solving these equations, the unique endemic-equilibrium point is given by: 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), where 
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𝑆∗ =
𝜀1𝜀2

𝜁𝛾
,              𝐸∗ =

𝑘𝜁𝛾−𝜀1𝜀2𝜇

𝜀1𝜁𝛾
,        𝐼∗ =

𝛾𝑘𝜁−𝜀1𝜀2𝜇

𝜁𝜀1𝜀2
,      𝑅∗ =

𝜁𝛾2𝛼𝑘+𝜀2𝛿𝜁𝛾𝑘−𝜀1𝜀2𝛼𝛾𝜇−𝛿𝜀1𝜀2
2𝜇

𝜀1𝜀2
. 

Lemma 4. If ℛ0 < 1, the endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), is local asymptotic stable in Ω. 

Proof. The Jacobian matrix 𝐽(𝑃∗), at 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), of the fractional order system (1.1) is given by 

𝐽(𝑃∗)  = [

−𝜁𝐼∗ − 𝜇 0 −𝜁𝑆∗ 0
𝜁𝐼∗ −𝜀1 𝜁𝑆∗ 0
0 𝛾 −𝜀2 0
0 𝛿 𝛼 −𝜇

]. 

Its characteristic equation 

                                                        (𝜆 + 𝜇)(ℓ1𝜆
3 + ℓ2𝜆

2 + ℓ3𝜆 + ℓ4) = 0,                                     (3.3) 

where 

ℓ1 = 1,    ℓ2 = 𝜀1 + 𝜀2 + 𝜇 + 𝜁𝐼∗,         ℓ3 = 𝜀1𝜀2 − 𝛾𝜁𝑆∗ + (𝜀1 + 𝜀2)(𝜇 + 𝜁𝐼∗), 

ℓ4 = (𝜇 + 𝜁𝐼∗)(𝜀1𝜀2 − 𝛾𝜁𝑆∗) − 𝛾 𝜁2𝑆∗𝐼∗. Eq. (3.3), gives: 𝜆1 = −𝜇, and the other values can be obtained 

from the equation 

ℓ1𝜆
3 + ℓ2𝜆

2 + ℓ3𝜆 + ℓ4 = 0. 

Based on Routh-Hurwitz conditions (Hurwitz, 1964), one obtains 

𝐷1(𝑃
∗)  =

[
 
 
 
 

ℓ1 ℓ2

ℓ2 ℓ4

ℓ2ℓ3 − ℓ4ℓ1

ℓ2
0

ℓ4 0 ]
 
 
 
 

. 

If you make sure that 
ℓ2ℓ3−ℓ4ℓ1

ℓ2
 has the same sign as ℓ3, the three eigenvalues have a negative real part. Because  

ℓ1 > 0 , ℓ2 > 0, ℓ3 > 0, ℓ4 > 0, 
ℓ2ℓ3−ℓ4ℓ1

ℓ2
> 0 and ℓ2ℓ3 > ℓ4ℓ1 hold. This validates the Routh-Hurbitz 

stability condition and 𝑃∗ is locally asymptotically stable. 
 

Lemma 5. The unique endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), of the fractional-order model (1.1) is 

asymptotically stable globally. 

Proof. Define the Lyapunov candidate function, as in (Delvari, 2012), as follows. 

𝐿(𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), 𝑅(𝜏))  =
1

2
(𝑆(𝜏) − 𝑆∗)2 +

1

2
(𝐸(𝜏) − 𝐸∗)2 +

1

2
(𝐼(𝜏) − 𝐼∗)2 +

1

2
(𝑅(𝜏) − 𝑅∗)2 . 

Linearity of Caputo operator gives 

𝐷𝜈𝐿(𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), 𝑅(𝜏))  =
1

2
[𝐷𝜈(𝑆(𝜏) − 𝑆∗)2 + 𝐷𝜈(𝐸(𝜏) − 𝐸∗)2 + 𝐷𝜈(𝐼(𝜏) − 𝐼∗)2 + 𝐷𝜈(𝑅(𝜏) − 𝑅∗)2] . 

Applying Proposition 5, one obtains 
 

𝐷𝜈𝐿(𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), 𝑅(𝜏))  ≤ 𝐷𝜈(𝑆(𝜏) − 𝑆∗) + 𝐷𝜈(𝐸(𝜏) − 𝐸∗) + 𝐷𝜈(𝐼(𝜏) − 𝐼∗) + 𝐷𝜈(𝑅(𝜏) − 𝑅∗)  
                                                               = κ − 𝜇(𝑆(𝜏) − 𝑆∗) − (𝜀1 − 𝛾 − 𝛿)(𝐸(𝜏) − 𝐸∗) − (𝜀2 − 𝛼)(𝐼(𝜏) − 𝐼∗) 

−𝜇(𝑅(𝜏) − 𝑅∗) . 
≤ κ − ℳ(𝑁(𝜏) − 𝑁∗),

 
 

where 

ℳ = min{𝜀1 − 𝛾 − 𝛿, 𝜀2 − 𝛼, 𝜇 }, 
 

𝑁∗ = 𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗ 

=
𝜀1𝜀2

𝜁𝛾
+

𝑘

𝜀1
−

𝜀2𝜇

𝜁𝛾
+

𝛾𝑘

𝜀1𝜀2
−

𝜇

𝜁
+

𝛼𝛾𝑘

𝜀1𝜀2
+

𝛿𝑘

𝜀1
−

𝛼𝜇

𝜁
−

𝛿𝜀2𝜇

𝜁𝛾
. 

Thus 
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𝐷𝜈𝐿(𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), 𝑅(𝜏))  ≤ 𝐷𝜈(𝑆(𝜏) − 𝑆∗) + 𝐷𝜈(𝐸(𝜏) − 𝐸∗) + 𝐷𝜈(𝐼(𝜏) − 𝐼∗) + 𝐷𝜈(𝑅(𝜏) − 𝑅∗)  
                                                               = κ − 𝜇(𝑆(𝜏) − 𝑆∗) − (𝜀1 − 𝛾 − 𝛿)(𝐸(𝜏) − 𝐸∗) − (𝜀2 − 𝛼)(𝐼(𝜏) − 𝐼∗) 

−𝜇(𝑅(𝜏) − 𝑅∗) . 
≤ κ − ℳ(𝑁(𝜏) − 𝑁∗),

 
 

where 

V(x) = ℳ𝑁(𝑡) − (κ + ℳ𝑁∗). 
 

Therefore, according to Proposition 4, the unique endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), is 

asymptotically stable globally.  

 

 

 

4. Results 

4.1. Sensitivity statistical analysis 

Statistical sensitivity analysis used to assess the impact relativity of multiple factors on model stability 

when data is unknown. The analysis can also determine which parameters are important. Calculate the 

sensitivity index ℛ0 of the model parameter using both the local and global methods. Local sensitivity 

analysis uses the normalized forward sensitivity index ℛ0. In terms of parameters, the sensitivity index 

ℛ0 for ℛ0 <  1 in the model is: 

                                                                      Γ𝜙
ℛ0 =

𝜕ℛ0

𝜕𝜙
×

𝜙

ℛ0
.                                                            (4.1) 

where 𝜙 is a value from Table 1. Table 1 lists the sensitivity indices of ℛ0 obtained using Maple. Since 

 

ℛ0 =
𝜁𝛾𝑘

𝜇𝜀1𝜀2
=

𝜁𝛾𝑘

𝜇(𝜇 + 𝛼)(𝜇 + 𝛾 + 𝛿)
. 

Then 

𝜕ℛ0

𝜕κ
=

𝜁𝛾

𝜇𝜀1𝜀2
> 0,           

𝜕ℛ0

𝜕𝜁
=

κ𝛾

𝜇𝜀1𝜀2
> 0,         

𝜕ℛ0

𝜕𝛾
=

𝜁κ

𝜇𝜀1𝜀2
> 0, 

𝜕ℛ0

𝜕𝜇
= −

𝜁𝛾𝑘

𝜇2𝜀1𝜀2
< 0,         

𝜕ℛ0

𝜕𝜀1
= −

𝜁𝛾𝑘

𝜇𝜀1
2𝜀2

< 0,       
𝜕ℛ0

𝜕𝜀2
= −

𝜁𝛾𝑘

𝜇𝜀2
2𝜀1

< 0, 

𝜕ℛ0

𝜕𝛿
= −

𝜁𝛾𝑘

𝜇(𝜇+𝛾+𝛿)2(𝜇+𝛼)
< 0,            

𝜕ℛ0

𝜕𝛼
= −

𝜁𝛾𝑘

𝜇(𝜇+𝛼)2(𝜇+𝛾+𝛿)
< 0. 

Equations (3.1) and (3.2) suggest how to select parameters such that ℛ0 <  1. Therefore, based on this, 

we can propose appropriate strategies for controlling and preventing the disease. Lemma 3 suggests that 

you need to control the parameters like ℛ0 <  1. The sensitivity index reveals the sensitivity of the 

variable ℛ0 to the model parameters. A positive (negative) index indicates that an increase in the 

parameter value results in an increase (decrease) in the ℛ0  value. Table 1 shows the sensitivity index 

for each parameter of model (1.1). Analyze the sensitivity of ℛ0 by inserting the parameter value into 

equation (4.1) as follows: 

Γκ
ℛ0 =

𝜕ℛ0

𝜕κ
×

κ

ℛ0
= 1,      Γ𝜁

ℛ0 =
𝜕ℛ0

𝜕𝜁
×

𝜁

ℛ0
= 1,      Γ𝛾

ℛ0 =
𝜕ℛ0

𝜕𝛾
×

𝛾

ℛ0
= 1,      Γ𝜇

ℛ0 =
𝜕ℛ0

𝜕𝜇
×

𝜇

ℛ0
= −1, 

Γ𝜀1

ℛ0 =
𝜕ℛ0

𝜕𝜀1
×

𝜀1

ℛ0
= −1,   Γ𝜀2

ℛ0 =
𝜕ℛ0

𝜕𝜀2
×

𝜀2

ℛ0
= −1,  Γ𝛿

ℛ0 =
𝜕ℛ0

𝜕𝛿
×

𝛿

ℛ0
=  −0.33,   Γ𝛼

ℛ0 =
𝜕ℛ0

𝜕𝛼
×

𝛼

ℛ0
=  −0.99. 

The sensitivity coefficients in Table 1 show that when the parameter values κ, 𝜁, and 𝛾 grow while the 

other parameter values remain constant, the value of ℛ0 grows. Because the parameters are positive, 
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this means that the disease's endemicity is increasing. The value of ℛ0 decreases as the parameter values 

𝜇, 𝜀1, 𝜀2, 𝛿, and 𝛼 are decreased while the rest of the parameter values remain constant. Since the indices 

exhibit negative indications, this indicates a decrease in disease endemicity. The most sensitive 

parameters are the infection rate   𝜁 from the susceptible population to the infected population and the 

confirmed infection rate 𝛾 from the exposed population, which includes births per unit time and new 

inhabitants 𝜏, and κ > 0 are included.  

 

 

Table 1. Parameters description for the novel (COVID-19) SEIR model 
Parameters Description values Sensitivity Index 

 κ Includes new births and new residents per unit time 2300 1 

𝜁 Transmission rate from susceptible population to infected population 1.18 × 10−9 1 

𝛾 The duration of the latent period 0.2 1 

𝜇 Natural death rate 3 × 10−5 -1 

𝛿 Suspected infection period 0.1 -0.33 

𝛼 Time spent in the infectious category 0.03 -0.99 

𝜀1 𝜀1 = 𝛾 + 𝜇 + 𝛿 0.30003 -1 

𝜀2 𝜀2 = 𝛼 + 𝜇 0.03003 -1 

 

4.2 Dynamics of (𝑺 − 𝑬 − 𝑰 − 𝑹) for different values of 𝝂 

 

The fractional order form of the SEIR model (1.1) is derived using the predict-evaluate-correct-evaluate 

(PECE) method of ABM studied in Diethelm (Diethelm, 1997), Diethelm and Freed (Diethelm and 

Freed, 1999)  Diethelm and Ford (Diethelm and Ford, 2002). Its convergence and accuracy have been 

discussed in Diethelm and Ford (Diethelm and Ford, 2002). Using a set of parameter values in Table 1, 

one simulates numerical system (1.1) for different values of fractional order 𝜈 to support analytical 

results (Figs. 1, 2). Consider the following: 

𝐷𝜈𝑆(𝜏) = 2300 − 1.18 × 10−9 × 𝑆(𝜏) × 𝐼(𝜏) − 3 × 10−5 × 𝑆(𝜏), 

                                               𝐷𝜈𝐸(𝜏) = 1.18 × 10−9 × 𝑆(𝜏) × 𝐼(𝜏) − 0.30003 × 𝐸(𝜏),                     (4.2) 

𝐷𝜈𝐼(𝜏) = 0.2 × 𝐸(𝜏) − 0.03003 × 𝐼(𝜏), 

𝐷𝜈𝑅(𝜏) = 0.1 × 𝐸(𝜏) + 0.03 × 𝐼(𝜏) − 3 × 10−5 × 𝑅(𝜏), 

with 𝑆(0) = 34218200, 𝐸(0) = 103, 𝐼(0) = 157, R(0) = 100.  For these parameters, 𝑃0 =

 (3.3333 × 𝑒+09, 0,0, 0)  is asymptomatically stable. According to Lemma 3, 𝑃0 is globally 

asymptotically stable of system (1.1). The numerical Covid-19 model proposed for different fractional 

order values 𝜈 is simulated to support analytical results and to evaluate control strategy effectiveness 

numerically. Fig. 1 shows the global stability of the model (4.2) at 𝑃0 using potentially different 

conditions when 𝜉 = 0.45 × 10−7 (thus ℛ0 = 0.2703 <  1). The solutions of (4.2) converge to the 

unique disease-free equilibrium 𝑃0, as predicted. 𝑃0 is asymptotically stable globally, according to (1.1). 

For smaller orders, the effect of 𝜇 is even more pronounced; compare 𝜈 = 0.7, 0.75, 0.80, 0.85, 0.95 in 
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Fig.1 (a), (b) (c), (d). Although the number of infected individuals has decreased significantly for smaller 

fractional orders, the number of susceptible individuals has increased, as shown in Fig. 1(c). 

Global stabilities of endemic model equilibrium (4.2) are illustrated in Fig. 2 using potentially different 

conditions when 𝜉 = 0.45 × 10−6 (so that ℛ0  =  2.7030 >  1). The solutions of (4.2) converge 

towards the unique endemic equilibrium of 𝑃∗, as predicted. According to Lemma 5,  𝑃∗ =

(4.0044 × 𝑒+03, 3.3330 × 𝑒+05, 1.9351 × 𝑒+03, 3.3388𝑒 × 𝑒+04), is global asymptotic stable. 

The impact of 𝜈 is more pronounced for smaller orders; compare 𝜈 = 0.7, 0.75, 0.80, 0.85, 0.95𝜈 =

0.7, 0.75, 0.80, 0.85, 0.95 in Fig. 2 (c), (d). Although the number of infected individuals has dropped 

for smaller fractional orders, the number of susceptible individuals also increased, as shown in Fig. 2(c). 

 

Figure 1. Dynamics of 𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), and 𝑅(𝜏), for different values of 𝜈 when ℛ0 = 0.2703. 
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Figure 2. Dynamics of 𝑆(𝜏), 𝐸(𝜏), 𝐼(𝜏), and 𝑅(𝜏), for different values of 𝜈 when ℛ0 = 2.7030. 

 

 

4.3 Real situation 

  

We examined evidence of the outbreak of Covid-19 in Saudi Arabia. Covid-19 has spread to Saudi 

Arabia by March 3, 2020. Covid-19 cases were reported in small numbers until April 1, 2020, when the 

number of reported cases increased. As a result, it was confirmed that the outbreak of Covid-19 in Saudi 

Arabia began on April 1, 2020 (Saudi Center for Diseases Prevention and Control, 2020). To find out 

more about Saudi Arabia's population, mortality, and growth rates, we looked at the Saudi Arabian 

Ministry of Health tables (Covid-19 in Saudi Arabia, 2020; Saudi Center for Diseases Prevention and 

Control, 2020; Saudi Ministry of Health, 2020). Figure 3 shows the daily Covid-19 infection curve and 

total infection timeline curve in Saudi Arabia through October 12, 2021. Figure 3 shows that there were 

157 infections on April 1, 2020. Since June 17, 2020, the number of infections has reached 4919. From 

that date onwards, daily infections decreased until August 5, 2020. Comparing with actual data using 

the SEIR model, Figure 3 shows the total number of infections that occurred during the same period, 

starting on August 5, 2020, with 157 infections and ending with 282,824 infections. 
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Figure 3. The daily number of cases from April 1, 2020, to October 12, 2021, was calculated based on the SEIR 

model for actual data from Saudi Arabia (Saudi Center for Diseases Prevention and Control, 2020; Saudi 

Ministry of Health, 2020). 

 

 

4.4 Applications 

  

Based on the Nelder-Mead algorithm, the actual data of activity, recovery, and death from Covid-19 in 

Saudi Arabia are adapted to a modified SEIR model that can predict the future dynamics of the 

pandemic. We will evaluate some aspects of Covid-19's future dynamics in Saudi Arabia. Validation of 

the modified fractional SEIR model was divided into two steps. In the first phase, the actual Covid-19 

spread data was used between April 1, 2020, and June 17, 2020, when it peaked. As part of the second 

phase, the actual Covid-19 data was distributed between June 18, 2020, and October 12, 2021. In the 

first phase, the population of Saudi Arabia was obtained from official data 26 of Saudi Arabia on June 

17, 2020. The total number of arrivals and births in Saudi Arabia was about 100,000 per day. Natural 

deaths occurred at a rate of about ≈  1030 people per day, resulting in 𝜇 = 3 × 10−5. Other parameters 

were estimated from the actual data (Table 1). As a result of applying the modified SEIR model to the 

parameter values shown in Table I, we were able to determine the daily infection count. Within the 

above period, the infection rate of Saudi Arabia from vulnerable people to the infected population was 

𝜉 = 0.45 × 10−6. In addition, ℛ0 =  2.7030 >  1 means that the proportion of susceptible individuals 

becoming exposed is greater than 1, and the incidence of Covid-19 during this period was not constant. 

Next, we used an updated SEIR model derived from Saudi Arabian data to explore the new initial state 

of the system. Table 1 shows the number of infections 𝐼(0)  =  4757, the value of parameter 𝜉 =

0.45 × 10−7, and other parameters. Also, ℛ0 =  0.2703 <  1. The parameter value at which a sensitive 

individual became an exposed individual was 1, indicating that the spread of Covid-19 was steady during 

this period. Figure 3 shows the convergence of the modified SEIR model results with the actual data. 

From April 1, 2020, to October 12, 2021, the proposed model will be used to estimate daily infections 
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in Saudi Arabia and compare them to actual data. As a result of applying the modified SEIR model, the 

result is displayed as a curve following the actual data curve. As a result, the SEIR model results agreed 

with the actual data. Figure 4 shows the proposed model results and the actual data convergence. The 

behavior of the two curves is similar and close to each other. In Figures 4 and 5, the results of the 

modified SEIR model are remarkably close to the actual data, demonstrating the success of the model. 

 

Figure 4. The number of recovery cases based on the SEIR model using actual Saudi Arabia data was calculated between April 

1, 2020 and October 12, 2021. 

 

Figure 5. The number of cases based on the SEIR model for actual Saudi Arabia data was calculated between April 1, 2020 

and October 12, 2021. 
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Figure 6. The number of active cases based on the SEIR model for actual Saudi Arabia data was calculated between April 

1, 2020 and October 12, 2021 (Saudi Center for Diseases Prevention and Control, 2020; Saudi Ministry of Health, 2020).

 
Figure 7. The number of death cases based on the SEIR model for actual Saudi Arabia data was calculated between April 1, 

2020 and October 12, 2021 (Saudi Center for Diseases Prevention and Control, 2020; Saudi Ministry of Health, 2020). 

 

4.5 Applying Runge-Kutta method on the case of 𝝂 = 𝟏. 

 

Use the ODE technique to solve the initial value problem. Tsit5 () (Tsitoura's 5/4 RungeKutta method) 

is a standard algorithm suitable for this type of non-rigid ODE. See Figures 8 and 9. 
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Figure 8. SEIR dynamics for the case of 𝝂 = 𝟏. 

 

 
Figure 9. SEIR proportions for the case of 𝝂 = 𝟏. 

 

4.6 Experiment 1: Constant case 𝓡𝟎 

Consider a situation: ℛ0 is a constant. Calculate the time course of an infected person under various 

assumptions  of ℛ0. As expected, low effective infection rates delay the peak of infection, and the peak 

is lower in the current case.  

4.7 Experiment 2: Changing Mitigation 

Now imagine a situation where mitigation (social distance, etc.) is gradually progressing. Here, the 

specification of ℛ0 = ℛ0(𝜏, 𝑟0 = 3, 𝜂 = 1, 𝑟1 = 1.6) as a function of time is as follows:  

ℛ0 = 𝑟0𝑒
−𝜏𝜂 + 𝑟1(1 − 𝑒−𝜏𝜂) . 

The idea is that ℛ0 starts at 3 and gradually decreases to 1.6. This is due to the gradual implementation 

of stricter mitigation measures. The rate at which the limit is imposed is controlled by the parameter 𝜂 

with different rates 𝜂 =  1/5, 1/10, 1/20, 1/50, 1/100. The speed or speed imposes limits controlled 

by the parameter 𝜂.  
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Figure 10. The time path of current cases of infected people under different assumptions of ℛ0. 

 

Figure 11. The time path of comulative cases of infected people under different assumptions of ℛ0. 

 

Figure 12. The time path of current cases of infected people under different assumptions of 𝜂 

 

Figure 13. The time path of comulative cases of infected people under different assumptions of 𝜂 
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4.8 Ending Lockdown 

Consider the following two mitigation scenarios.  

1. ℛ0(τ) = 0.5 for 30 days, then ℛ0(τ) = 0.5 for the remaining 17 months.  

2. ℛ0(τ) = 0.5 for 120 days, then ℛ0(τ) = 2 for the remaining 14 months.  

In both cases, select a large η to concentrate if the quick change of the blocking policy remains feasible. 

 
Figure 14.  Ending lockdown under mitigation scenarios 

 

 

5. Discussions 

If ℛ0 ≤ 1, the model (1.1) has only a globally stable infection-free equilibrium, meaning that the 

infection-free equilibrium eventually dies out. Moreover, several strategies are introduced, and the 

model evolution is drawn up in various cases based on the rate of contact between individuals, which 

can be effective in minimizing infection. The findings of the fractional SEIR model were compared to 

the observed outcomes in Saudi Arabia because of Covid-19 spread. Given Covid-19's estimation ℛ0, 

reducing the number of contacts in the population is a major step in containing the outbreak. The 

estimate for ℛ0 is higher than the estimate for WHO. To achieve the best possible situation to curb the 

Covid-19 epidemic in Saudi Arabia, we need to begin applying the four key processes and procedures 

listed below.  

1. By evaluating the population with 𝜉 ≤ 0.45 × 10−7, reduce the infection rate value from the 

susceptible population to the infected but undetected population (Prevention, not treatment).  
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2. To extend the incubation period, reduce the infection rate from individuals confirmed to be infected 

from the exposed population: 𝛾 < 0.2. This can be achieved by long-term isolation of the infected 

population from other populations and confinement in a safe place.  

3. Increase the transmission rate of recovery from the exposed population 𝛿 > 0.1. This approach 

requires reducing infection detection time by using real-world tools and methods to identify confirmed 

infections more quickly.  

4. Increase the rebound transmission rate of infected populations 𝛼 > 0.03. This can be achieved by 

reducing the time spent in the infectious category through effective treatment and making vitamins, 

dietary supplements, and dietary supplements publicly available. 

6. Conclusions 

We have developed a modified SEIR model. The results of the modified fractional SEIR model were 

validated using actual Covid-19 spread data from Saudi Arabia. We have shown that a modified 

fractional SEIR model can be used to analyze epidemic dynamics in Saudi Arabia such as Covid-19. It 

is important to estimate ℛ0 of Covid-19 to determine the severity of the pandemic and to design 

appropriate treatments and responses to protect the population and control the spread of the disease 

(Covid-19 in Saudi Arabia, 2020). The estimated value of ℛ0 is important because in the epidemiology 

of infection, the permeation intensity needs to be reduced by 1 − 1/ℛ0 to eliminate the outbreak. This 

percentage is 60.0% for ℛ0 = 2.5, but 68.7% for ℛ0 = 3.2. Given Covid-19's expected ℛ0, limiting the 

number of contacts in a population is a crucial step in combating the epidemic. To counter this pandemic, 

it may be important to implement programs that extend social distance, ban mass gatherings, restrict 

transportation, and close schools and facilities. Overall, the predicted ℛ0 was greater than the WHO 

estimate. 
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