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Abstract: 

A new approach of the finite difference method is implemented for solving 

time-space fractional convection-diffusion equations. This technique converts 

the issue to the implicit scheme by using the Laplace algorithm type-1 and 

Grünwald-Letnikov formula in handling the time derivative and space 

derivative respectively. The novel impact of this paper is to extend the finite 

difference method involving fractional time derivatives. The proposed implicit 

scheme is  (2 − 𝛾) order accuracy in time and second-order accuracy in 

space. Moreover, stability and convergence analyses are proved. Our 

numerical examples show the behavior of the solution for varying values of 

fractional derivatives. 
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________________________________________________________________________ 

1. Introduction  

       Many phenomena such as earthquakes and non-Markov Processes can be represented by diffusion 

and convection processes. Through these processes, the physical quantities are transferred, and can be 

modeled this phenomenon by convection-diffusion equations (CDE). Recently, fractional calculus has 

proven helpful in the development of different models for fractional diffusion by linking fractional 

constitutive laws, fractional Brownian motions, and random walk, for more details, see (Henry, 

Langlands and Straka, 2010), (Metzler and Klafter, 2000) and (Mandelbrot and Van Ness, 1968). 

       In the last decades, various methods have been introduced for finding a reliable approximate 

technique for solving a class of diffusion equations. Sayevand et al  (Sayevand and Arjang, 2016) used 

a finite volume element method for finding a numerical scheme that approximates the sub-diffusion 

equation. Jia and Wang (Jia and Wang, 2016) applied a volume-penalization to approximate the 

fractional diffusion equations. While in (Zhao et al., 2016) Zhao et al used spatial quasi-Wilson 

nonconforming to convert a time-fractional diffusion equation to an implicit scheme. Izadkhah et al used 

the Lagrange polynomials and Gegenbauer polynomials for handling the derivatives that appear in CDE  

(Izadkhah and Saberi‐Nadjafi, 2015). While Saadatmandi et al  (Saadatmandi, Dehghan and Azizi, 2012) 

solved fractional CDEs by improving sinc–legendre collocation method.  

In 2021 Sene discussed the stability and convergence analysis of the numerical solution for the fractional 

differential diffusion equations with reaction terms (Sene, 2021a). Also,  (Sene, 2021b) Sene introduced 

some applications for a fractional-order system described by Caputo fractional derivatives. In (Qu, She 

and Liu, 2021) Qu et al studied the fractional diffusion equations with integral fractional Laplacian by 

recasting the equation into an equivalent Ritz formulation. Shen et al  (Shen, Li and Shao, 2020) 

proposed the implicit finite difference scheme and generated a linear system with a real Toeplitz 

structure. Mishra  (Mishra and Dubey, 2020) construct a series solution for the space fractional diffusion 

equations with conformable derivatives. 
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In (Edwan et al., 2021) Edwan et al introduced a finite volume method and finite difference method 

with supporting analysis for solving a space-fractional convection-diffusion equation, the extension of 

this work is applied for solving a time-space fractional convection-diffusion equation by using the finite 

difference method. 

        This paper aims to improve a finite difference method (FDM) in finding approximate solutions for 

a time-space fractional convection-diffusion equation (TSFCDE) in the following form: 

𝜕𝛾𝜙(𝑥,𝑡)

𝜕𝑡𝛾
+ 𝜖

𝜕

𝜕𝑥
𝐽𝑎
𝛼𝜙(𝑥, 𝑡) − 𝑣

𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
= 𝑔(𝑥, 𝑡), 𝑡 ≥ 0, 0 < 𝛾 ≤ 1, ,0 ≤ 𝛼 < 1,           (1) 

subject to the initial condition 

𝜙(𝑥, 0) = 𝑓(𝑥)           𝑎 ≤ 𝑥 ≤ 𝑏                                                       (2) 

𝜖 and v are positive parameters, 𝛾 is the order of the time-fractional, 𝛼 is the order of space fractional 

integral,  𝑔(𝑥, 𝑡), 𝑓(𝑥)  are a smooth function, and 𝜙(𝑥, 𝑡) is concentration (Edwan et al., 

2021),(Izadkhah and Saberi‐Nadjafi, 2015). 

     The organization of this paper is as follows: Some preliminary about fractional derivatives and 

integrals are proposed in section 2. Section 3 contains a new formulation of FDM for solving the 

initial value problem IVP given in Eq. (1) and Eq. (2), supported with theoretical analysis. Numerical 

examples are given in Section 4 to show the validity of the method. Finally, in Section 5 some 

conclusions are given. 

2. Basic Definitions 

In this section, some preliminary definitions and theorems related to fractional calculus are introduced 

briefly, such as the Grünwald-Letnikov formula, the Riemann-Liouville fractional integral, and the 

Caputo fractional derivative. 

Definition I. (see (Podlubny, 1998)) The fractional integral of order 𝛼 > 0 in Riemann-Liouville sense 

𝐽𝑎
𝛼𝜙(𝑥)  is defined as:             

𝐽𝑎
𝛼𝜙(𝑥) =

1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝜙(𝑡)𝑑𝑡 ,
𝑥

𝑎
 provided that 𝜙 ∈ 𝐿1[𝑎, 𝑏],                               (3) 

where 𝜙 ∈ 𝐿1[𝑎, 𝑏], 𝜙: [𝑎, 𝑏] → ℂ, 𝜙 is measurable on [a, b] and ∫  |𝜙(𝑥)| 𝑑𝑥 <  ∞. 

Definition II. (see (Podlubny, 1998) )  Let  𝜙 ∈ 𝐶⌈𝛼⌉[𝑎, 𝑏], 𝛼 > 0. Then the fractional derivative of 

order α in Grünwald-Letnikov sense �̃� 𝜙(𝑥)𝑎
𝛼  is defined as: 

                   �̃� 𝜙(𝑥)𝑎
𝛼 = lim

ℎ→0 

1

ℎ𝛼
∑ (−1)𝑘(𝛼

𝑘
)𝜙(𝑥 − 𝑘ℎ),

[
𝑥−𝑎

ℎ
]

𝑘=0  𝑎 < 𝑥 ≤ 𝑏, ℎ =
𝑥−𝑎

𝑁
,                         (4) 

where 𝐶⌈𝛼⌉[𝑎, 𝑏] the set of functions with continuous ⌈𝛼⌉𝑡ℎderivative on [𝑎, 𝑏]. 

Theorem I. Let 𝛼 > 0, and 𝜙 ∈ 𝐶[𝑎, 𝑏], then                                        

𝐽 𝜙(𝑥) = 𝑙𝑖𝑚
ℎ⟶0

ℎ𝛼 ∑ 𝑤𝑘
𝛼𝜙(𝑥 − 𝑘ℎ), ℎ =

𝑥−𝑎

𝑁
 , 𝑎 < 𝑥 ≤ 𝑏

[
𝑥−𝑎

ℎ
]

𝑘=0𝑎
𝛼 ,                                    (5) 

where  𝑤0
𝛼 = 1, 𝑤1

𝛼 = 𝛼  and 𝑤𝑘
𝛼 = (1 −

(1−𝛼)

𝑘
)𝑤𝑘−1 

𝛼 , 𝑘 = 2,3, …, 

where 𝐶[𝑎, 𝑏] the set of functions on [𝑎, 𝑏]. 

Proof of theorem I. see (Arqub et al., 2020).  

Definition III. (see (Podlubny, 1998) ) Let 𝜙 ∈ 𝐿1[𝑎, 𝑏], 𝛾 ˃ 0 then the fractional derivative 𝒟∗
𝛾
𝜙(𝑥) of 

order 𝛾 in Caputo sense defined by 
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𝒟∗
𝛾
𝜙(𝑥) = {

1

𝛤(𝑛−𝛾)
∫

𝜙(𝑛)(𝑠)

(𝑥−𝑠)𝛾+1−𝑛
𝑑𝑠   , 𝑛 − 1 < 𝛾 < 𝑛

𝑥

0

𝑑𝑛𝜙(𝑥)

𝑑𝑥𝑛
,                             𝛾 = 𝑛.

 , where 𝑛 = ⌈𝛼⌉,                           (6) 

where Γ(α) = ∫ 𝑠𝛼−1𝑒−𝑠𝑑𝑠,
∞

0
  𝛼 > 0, 𝛤(𝛼 + 1) = 𝛼𝛤(𝛼), 𝛤(𝛼)𝛤(1 − 𝛼) =

𝜋

𝑠𝑖𝑛𝜋𝛼
. 

 

3. Finite difference method 

A new formulation of FDM is introduced for solving a TSFCDE in the following form: 

        𝒟∗
𝛾
𝜙(𝑥, 𝑡) + 𝜖

𝜕

𝜕𝑥
𝐽𝑎
𝛼𝜙(𝑥, 𝑡) − 𝑣

𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
= 𝑔(𝑥, 𝑡).     𝑡 > 0  ,0 ≤ 𝛼 < 1, 0 < 𝛾 ≤ 1,                   (7) 

subject to the initial condition   

                                               𝜙(𝑥, 0) = 𝑓(𝑥)           𝑎 ≤ 𝑥 ≤ 𝑏,                                                           (8) 

where 𝒟∗
𝛾
𝜙(𝑥, 𝑡) is the Caputo fractional derivative with respect to 𝑡, 𝐽𝑎

𝛼𝜙(𝑥, 𝑡) is fractional integral 

with respect to 𝑥 in Riemann-Liouville sense, and 𝑔(𝑥, 𝑡), 𝑓(𝑥)  are  smooth functions. 

 First, discretize a finite domain I = [𝑎, 𝑏] and that yields nodes 𝑥𝑖 = 𝑎 + 𝑖ℎ, ℎ =
𝑏−𝑎

𝑁
, 𝑖 = 0,1,… ,𝑁, 

and define a temporal partition  𝑡𝑛 = 𝑛𝜏 where 𝜏 is the time step , 𝑛 = 0,1,…. Use the difference 
formulas given in Eq. (9) and Eq. (10) for evaluating the first and second derivative in Eq. (7) at 𝑥 = 𝑥𝑖, 
and the Grünwald-Letnikov formula given in Eq. (11) for approximate the Riemann-Liouville integral  

𝐽𝑎
𝛼𝜙(𝑥, 𝑡) at 𝑥 = 𝑥𝑖+1 and 𝑥 = 𝑥𝑖−1. 

                                           
𝜕𝜙(𝑥,𝑡)

𝜕𝑥
|
𝑥=𝑥𝑖

=
𝜙(𝑥𝑖+1,𝑡)−𝜙(𝑥𝑖−1,𝑡)

2ℎ
+ 𝒪(ℎ2),                                        (9) 

                                        
𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
|
𝑥=𝑥𝑖

=
𝜙(𝑥𝑖−1,𝑡)−2𝜙(𝑥𝑖,𝑡)+𝜙(𝑥𝑖+1,𝑡)

ℎ
2 + 𝒪(ℎ2),                            (10) 

                                          𝐽𝑎
𝛼𝜙(𝑥, 𝑡) = ℎ

𝛼 ∑ 𝑤𝑗
𝛼𝜙(𝑥 − 𝑗ℎ, 𝑡)𝑁

𝑗=0 + 𝜊(1),                                 (11) 

then Eq. (7) at (𝑥𝑖 , 𝑡𝑛+1) become 

𝒟∗
𝛾
𝜙(𝑥𝑖 , 𝑡)|𝑡=𝑡𝑛+1

= 

         −
𝜖

2ℎ
[ℎ𝛼∑ 𝑤𝑗

𝛼𝜙(𝑥𝑖−𝑗+1, 𝑡𝑛+1) + 𝜊(1)
𝑖+1
𝑗=0 − ℎ𝛼 ∑ 𝑤𝑗

𝛼𝜙(𝑥𝑖−𝑗−1, 𝑡𝑛+1) + 𝜊(1)
𝑖−1
𝑗=0 ]                                           

             +𝑣 [
𝜙(𝑥𝑖−1,𝑡𝑛+1)−2𝜙(𝑥𝑖,𝑡𝑛+1)+𝜙(𝑥𝑖+1,𝑡𝑛+1)

ℎ2
 + 𝒪(ℎ2)] + 𝑔(𝑥𝑖, 𝑡𝑛+1).                            (12) 

Now, use the Laplace algorithm type-1 (L1 –algorithm) for discretize the time derivative in Caputo 

sense 0 < 𝛾 < 1, see (Oldham and Spanier, 1974). 

𝒟∗
𝛾
𝜙(𝑥𝑖 , 𝑡𝑛+1) =

𝜏−𝛾

𝛤(2−𝛾)
∑ 𝑏𝑟

𝛾
[𝜙(𝑥𝑖, 𝑡𝑛+1−𝑟) − 𝜙(𝑥𝑖, 𝑡𝑛−𝑟)]

𝑛
𝑟=0 + 𝒪(𝜏2−𝛾),                (13) 

where 𝑏𝑟
𝛾
= (𝑟 + 1)1−𝛾 − 𝑟1−𝛾, 𝑟 = 0,1, … , 𝑛.  

Letting 𝜙𝑖
𝑛 ≈ 𝜙(𝑥𝑖 , 𝑡𝑛) denote the numerical solution, we have 

     
𝜏−𝛾

𝛤(2−𝛾)
∑ 𝑏𝑟

𝛾
[𝜙𝑖

𝑛+1−𝑟 − 𝜙𝑖
𝑛−𝑟]𝑛

𝑟=0  =  −
𝜖

2ℎ
[ℎ𝛼∑ 𝑤𝑗

𝛼𝜙𝑖−𝑗+1
𝑛+1𝑖+1

𝑗=0 − ℎ𝛼 ∑ 𝑤𝑗
𝛼𝜙𝑖−𝑗−1

𝑛+1𝑖−1
𝑗=0 ]        

                              +𝑣 [
𝜙𝑖−1
𝑛+1−2𝜙𝑖

𝑛+1+𝜙𝑖+1
𝑛+1

ℎ2
] + 𝑔𝑖

𝑛+1.                (14)             
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 Rewrite Eq. (14) as: 

𝜏−𝛾

𝛤(2−𝛾)
∑ 𝑏𝑟

𝛾
[𝜙𝑖

𝑛+1−𝑟 − 𝜙𝑖
𝑛−𝑟]𝑛

𝑟=0     = −∑ 𝑎𝑖𝑗𝜙𝑗
𝑛+1𝑁

𝑗=0 + 𝑔𝑖
𝑛+1,                                                (15) 

where      𝑎𝑖𝑗 =

{
 
 
 

 
 
 
𝜖ℎ𝛼−1[𝑤𝑖−𝑗+1

𝛼 −𝑤𝑖−𝑗−1
𝛼 ]

2
         , 𝑗 < 𝑖 − 1

𝜖ℎ𝛼−1[𝑤2
𝛼−𝑤0

𝛼]

2
−

𝑣

ℎ2
          , 𝑗 = 𝑖 − 1

𝜖ℎ𝛼−1𝑤1
𝛼

2
+
2𝑣

ℎ2
             , 𝑗 = 𝑖

𝜖ℎ𝛼−1𝑤0
𝛼

2
−

𝑣

ℎ2
                    , 𝑗 = 𝑖 + 1

        0                                   , 𝑗 > 𝑖 + 1

                                                                     (16)                                                                      

By denoting the solution vector 𝜙𝑛 = [𝜙0
𝑛 , 𝜙1

𝑛, … , 𝜙𝑁
𝑛]  and source vector 𝑔𝑛+1 =

[𝑔(𝑥0, 𝑡𝑛+1), 𝑔(𝑥1, 𝑡𝑛+1), … , 𝑔(𝑥𝑁, 𝑡𝑛+1)], then the  vector equation given by  

      (𝐼 + Γ(2 − 𝛾)𝜏𝛾𝑆)𝜙𝑛+1 = 𝑏𝑛
𝛾
𝜙0 +∑ (𝑏𝑟

𝛾
− 𝑏𝑟+1

𝛾
)𝜙𝑛−𝑟𝑛−1

𝑟=0 + 𝜏𝛾Γ(2 − 𝛾)𝑔𝑛+1,                    (17)             

   where the matrix 𝑆 has elements 𝑠𝑖𝑗 = 𝑎𝑖𝑗. 

 For 0 ≤ 𝛼 < 1 if  𝑣 >
𝜖ℎ𝛼+1

2
 then the diagonal elements in 𝐶 = 𝐼 + Γ(2 − 𝛾)𝜏𝛾𝑆 are positive and 𝐶 is 

strictly diagonally dominant. Moreover, the matrix 𝐶−1 = (𝐼 + 𝛤(2 − 𝛾)𝜏𝛾𝑆)−1 exists and the spectral 

radius 𝜌(𝐶) < 1, hence the implicit scheme (17) is conditionally stable. For more details see (Edwan et 

al., 2021). L1 –algorithm and Eq. (12) guarantee the consistency of the implicit scheme (17) with (2 −

𝛾) order accuracy in time and second-order accuracy in space.  

 

4. Numerical Experiments 

Several examples are introduced in this section to evince the accuracy of the proposed method, For γ = 

1 the given IVP (1) and (2) convert to SFCDE, this issue has been discussed and many examples have 

been introduced in (Edwan et al., 2021). The FDM works well for solving this problem, in this approach, 

we can select randomly the space-fractional derivative, time-fractional derivative, and nonlinear initial 

condition. The computations are performed by Wolfram Mathematica software 11. 

Example 4.1: Consider the following TSFCDE  

𝒟∗
𝛾
𝜙(𝑥, 𝑡) + 𝜖

𝜕

𝜕𝑥
𝐽𝑎
𝛼𝜙(𝑥, 𝑡) − 𝑣

𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
= 𝑔(𝑥, 𝑡).     𝑡 > 0  ,0 ≤ 𝛼 < 1, 0 < 𝛾 ≤ 1,                 (18) 

𝑥 ∈ [0,1.2], 𝛼 = 0.15, 𝜖 = 1, 𝑣 = 2, 𝑔(𝑥, 𝑡) = 0 subject to the initial condition 𝜙(𝑥, 0) =

𝐸𝑥𝑝(𝑚𝑥),𝑚 = 1.17712434446770. The numerical results of FDM at 𝛼 = 0.15 with varying 𝛾 such 

that 𝛾 ∈ {0.75,0.85,0.95,1} are given in Table1, at the time 𝑡 = 0.5 and 𝑥 ∈ [0,1] using 𝜏 = 0.025 and 

ℎ = 0.0625 . In figure 1 the solutions behavior of  𝜙(𝑥, 𝑡) are given at 𝛼 = 0.15, 𝑥 ∈ [0,1.2]. varying  

𝛾 such that 𝛾 ∈ {0.75,0.85,0.95,1}. 
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Figure 1.  The solutions behavior of 𝜙(𝑥, 𝑡)  for Example 4.1 at 𝛼 = 0.15, 𝑡 =

0.5 with varying 𝛾. 

 

Table 1. The numerical results of 𝜙(𝑥, 𝑡) for Example 4.1 at 𝛼 = 0.15, 𝑡 = 0.5 

with varying 𝛾 

𝑥 𝛾 = 0.75 𝛾 = 0.85 𝛾 = 0.95 𝛾 = 1.00 

0.0 0.0210271 0.0157564 0.00880711 0.00457635 

0.0625 0.0410225 0.0308125 0.0173037 0.00905871 

0.125 0.0598439 0.0450291 0.0253746 0.0133547 

0.1875 0.0773284 0.0582548 0.0329 0.0173714 

0.25 0.0933044 0.0703346 0.0397618 0.0210204 

0.3125 0.107596 0.081114 0.0458471 0.0242196 

0.375 0.120025 0.0904414 0.0510501 0.0268961 

0.4375 0.130411 0.0981696 0.0552741 0.0289877 

0.5 0.138575 0.104157 0.0584332 0.0304446 

0.5625 0.144338 0.108269 0.0604531 0.0312305 

0.625 0.147523 0.110379 0.0612727 0.0313239 

0.6875 0.147953 0.110367 0.0608444 0.0307182 

0.75 0.145454 0.108125 0.0591349 0.0294223 

0.8125 0.139855 0.103553 0.0561256 0.0274605 

0.875 0.130986 0.09656 0.051812 0.024872 

0.9375 0.118682 0.0870671 0.0462041 0.0217101 

1.0 0.102779 0.0750042 0.0393255 0.0180413 
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Example 4.2: Consider the following TSFCDE 

𝒟∗
𝛾
𝜙(𝑥, 𝑡) + 𝜖

𝜕

𝜕𝑥
𝐽𝑎
𝛼𝜙(𝑥, 𝑡) − 𝑣

𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
= 𝑔(𝑥, 𝑡).     𝑡 > 0  ,0 ≤ 𝛼 < 1, 0 < 𝛾 ≤ 1,                  (19) 

𝑥 ∈ [0,2.25], 𝛼 = 0.15, 𝜖 = 1, 𝑣 = 2, 𝑔(𝑥, 𝑡) = 0 subject to the initial condition 𝜙(𝑥, 0) =

−𝑠𝑖𝑛 (𝜋𝑥) . The numerical results of FDM at 𝛼 = 0.15 with varying 𝛾 such that 𝛾 ∈ {0.75,0.85,0.95,1} 

are given in Table 2, at the time 𝑡 = 0.5 and 𝑥 ∈ [0,2] using 𝜏 = 0.025 and ℎ = 0.125. In figure 2 the 

solutions behavior of  𝜙(𝑥, 𝑡) are given at 𝛼 = 0.15, 𝑥 ∈ [0,2.25]. varying  𝛾 such that 𝛾 ∈

{0.75,0.85,0.95,1}. 

             

 

Figure 2.  The solutions behavior of 𝜙(𝑥, 𝑡)of Example 4.2 at 𝛼 =

0.15, 𝑡 = 0.5 with varying 𝛾. 

 

Table 2. The numerical results of 𝜙(𝑥, 𝑡) for Example 4.2 at 𝛼 = 0.15, 𝑡 = 0.5 with 

varying 𝛾 

𝑥 𝛾 = 0.75 𝛾 = 0.85 𝛾 = 0.95 𝛾 = 1.00 

0.0 -0.00923358 -0.00606334 -0.00185397 0.00073433 

0.125 -0.0183269 -0.0119511 -0.00355519 0.00157357 

0.25 -0.025664 -0.016563 -0.00464082 0.00260969 

0.375 -0.0298581 -0.0189596 -0.00472374 0.00390936 

0.5 -0.0299729 -0.0185123 -0.00355345 0.00550534 

0.625 -0.0256698 -0.0150033 -0.00105676 0.00739041 

0.75 -0.0172642 -0.0086638 0.00264675 0.00951492 

0.875 -0.00568183 -0.000144151 0.00725695 0.0117885 

1.0 0.00767731 0.00957843 0.0123313 0.014086 

1.125 0.0211469 0.0193416 0.017343 0.0162565 

1.25 0.0330422 0.0279669 0.0217516 0.0181354 
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1.375 0.0419107 0.034431 0.0250744 0.0195587 

1.5 0.0467472 0.0380128 0.0269499 0.0203762 

1.625 0.0471396 0.0383944 0.0271833 0.0204658 

1.75 0.0433257 0.035702 0.0257674 0.0197442 

1.875 0.0361498 0.0304781 0.0228779 0.0181759 

2.0 0.0269279 0.0235928 0.0188424 0.0157779 

 

Example 4.3. Consider the following TSFCDE 

𝒟∗
𝛾
𝜙(𝑥, 𝑡) + 𝜖

𝜕

𝜕𝑥
𝐽𝑎
𝛼𝜙(𝑥, 𝑡) − 𝑣

𝜕2𝜙(𝑥,𝑡)

𝜕𝑥2
= 𝑔(𝑥, 𝑡).     𝑡 > 0  ,0 ≤ 𝛼 < 1, 0 < 𝛾 ≤ 1,                    (20) 

𝑥 ∈ [0,1.2], 𝛼 = 0.15, 𝜖 = 0.1, 𝑣 = 0.02, 𝑔(𝑥, 𝑡) = 𝑥2 subject to the initial condition 𝜙(𝑥, 0) =

𝐸𝑥𝑝(𝑚𝑥),𝑚 = 1.17712434446770. The numerical results of FDM at 𝛼 = 0.15 with varying 𝛾 such 

that 𝛾 ∈ {0.75,0.85,0.95,1} are given in Table 3, at the time 𝑡 = 0.5 and 𝑥 ∈ [0,1] using 𝜏 = 0.025 and 

ℎ = 0.0625 . In figure 3 the solutions behavior of  𝜙(𝑥, 𝑡) are given at 𝛼 = 0.15, 𝑥 ∈ [0,1.2]. varying  

𝛾 such that 𝛾 ∈ {0.75,0.85,0.95,1}. 

 

 

Figure 3.  The solutions behavior of 𝜙(𝑥, 𝑡)of Example 4.3 at 𝛼 =

0.15, 𝑡 = 0.5 with varying 𝛾. 
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Table 3. The numerical results of 𝜙(𝑥, 𝑡) for Example 4.3 at 𝛼 = 0.15, 𝑡 =

0.5 with varying γ. 

𝑥 𝛾 = 0.75 𝛾 = 0.85 𝛾 = 0.95 𝛾 = 1.00 

0.0 0.422426 0.419693 0.416903 0.415494 

0.0625 0.753864 0.75772 0.763718 0.767613 

0.125 1.01279 1.02011 1.0303 1.03642 

0.1875 1.22151 1.2267 1.23386 1.23794 

0.25 1.40074 1.40017 1.40043 1.40063 

0.3125 1.56672 1.5591 1.55182 1.5482 

0.375 1.73074 1.71615 1.7021 1.69532 

0.4375 1.90009 1.87907 1.8591 1.84966 

0.5 2.07919 2.05225 2.0269 2.01505 

0.5625 2.27051 2.23816 2.20768 2.19346 

0.625 2.47497 2.43794 2.40263 2.38605 

0.6875 2.69175 2.65143 2.61211 2.59336 

0.75 2.91707 2.87612 2.83487 2.81469 

0.8125 3.14175 3.1046 3.06568 3.04593 

0.875 3.34673 3.31936 3.28975 3.27401 

0.9375 3.49603 3.48415 3.47208 3.4654 

1.0 3.52745 3.53212 3.54153 3.54746 

 

5.  Conclusions 

The FDM has been developed for solving the TSFCDE, the numerical solution has been represented in 

an implicit scheme, in this method L1 –algorithm has been used for approximating the time-Caputo 

fractional derivative, and the fractional Grünwald-Letnikov formula for approximate the Riemann-

Liouville integral 𝐽𝑎
𝛼𝜙(𝑥, 𝑡) and yield an implicit scheme that is with (2 − 𝛾) order accuracy in time and 

second-order accuracy in space.  Several examples have been introduced and the numerical results have  

shown this method can solve the problem effectively. The calculations have been performed by using 

the Wolfram Mathematica 11. In the future, we can extend this method to solve TSFCDE with variable 

coefficients. 
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